Parameter Types#
IParameter#
-
class IParameter#
Subclassed by visionflow::param::BinaryPacks, visionflow::param::BinaryTrainingParameters, visionflow::param::IAveragePrecisionList, visionflow::param::IPrecisionEvaluation, visionflow::param::ITableList, visionflow::param::LabelClasses, visionflow::param::SchemableParameter, visionflow::param::ViewTransformParameterList
ISchemable#
-
struct ISchemable#
Json Schemable Class API.
A Json Schemable Class is a class that can be serialized to/deserialized from Json and can be validated by Json Schema.
Subclassed by visionflow::param::AssemblyVerificationLayOutArea, visionflow::param::AssemblyVerificationMaxInputSize, visionflow::param::AssemblyVerificationModelParameters, visionflow::param::AssemblyVerificationTargetParameters, visionflow::param::AxialSideLengthRange, visionflow::param::ClassificationInputShape, visionflow::param::DataAugmentation, visionflow::param::DetectionInputShape, visionflow::param::DetectionTrainingStrategy, visionflow::param::ExampleAugRotate, visionflow::param::ExampleAugShift, visionflow::param::FilterScript, visionflow::param::GeoAugDistortion, visionflow::param::GeoAugScale, visionflow::param::GeoAugShift, visionflow::param::GeoAugSlightRotation, visionflow::param::GeometryAugmentation, visionflow::param::ImageAugBrightness, visionflow::param::ImageAugColorFilter, visionflow::param::ImageAugContrast, visionflow::param::ImageAugIlluminationGradient, visionflow::param::ImageAugNoise, visionflow::param::ImageAugSmoothingOrSharpening, visionflow::param::ImageAugmentation, visionflow::param::KeyPointNode, visionflow::param::LocationMaxInputSize, visionflow::param::LocationModelParameters, visionflow::param::LocationTargetParameters, visionflow::param::LossCurve, visionflow::param::MultiNameKeyPointNode, visionflow::param::NodeMatchTemplate, visionflow::param::OCRAnnulusParameters, visionflow::param::OCRNodeTemplate, visionflow::param::OCRStringTemplate, visionflow::param::PropertyObjectId, visionflow::param::RegularExpression, visionflow::param::SchemableParameter, visionflow::param::SegmentationImageSplit, visionflow::param::SegmentationInputShape, visionflow::param::SegmentationModelParameters, visionflow::param::SegmentationTrainingSampleStrategy, visionflow::param::SideLengthRange, visionflow::param::SingleClassPolygonsFilterParameters, visionflow::param::UnsuperClassificationInputShape, visionflow::param::UnsuperDefectRadius, visionflow::param::UnsuperSegmentationInputShape, visionflow::param::UnsuperSegmentationModelParameters, visionflow::param::UnsuperSegmentationSamplingParameters
Public Functions
-
virtual const std::string &schema_str() const = 0#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const = 0#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
const void* The nlohmann::json object pointer
-
virtual visionflow::Buffer to_json() const = 0#
Serialize the parameter group to schema-validatable json string.
- Returns:
visionflow::Buffer the schema-validatable json string.
-
virtual ISchemable &from_json(const visionflow::Buffer &json_str) = 0#
Deserialize the parameter group from schema-validatable json string.
See also
validate(const std::string &json_str, std::string *error_msg = nullptr)
- Parameters:
json_str – [in] the schema-validatable json string.
- Throws:
visionflow::excepts::InvalidJson – if the json string is invalid.
visionflow::excepts::JsonSchemaValidationError – if the json string is not serialized from this parameter type or validation the json with json schema failed.
- Returns:
ISchemable& the reference of the parameter.
-
bool validate(const visionflow::Buffer &json_str, std::string *error_msg = nullptr) const#
Validate the parameter json string with json schema.
- Parameters:
json_str – [in] the json string.
error_msg – [out] the error message if the json string is invalid, otherwise empty.
- Throws:
visionflow::excepts::InvalidJson – if the json string is invalid.
- Returns:
bool true if the json string is valid, otherwise false.
-
virtual const std::string &schema_str() const = 0#
SchemableParameter#
-
struct SchemableParameter : public virtual visionflow::param::IParameter, public virtual visionflow::param::ISchemable#
SchemableParameter feature interface for IParameter classes.
Subclassed by visionflow::param::AssemblyVerificationFilterParameters, visionflow::param::AssemblyVerificationTemplates, visionflow::param::AssemblyVerificationTrainingParameters, visionflow::param::BaseColor, visionflow::param::ClassificationInferParameters, visionflow::param::ClassificationTrainingParameters, visionflow::param::DetectionInferParameters, visionflow::param::DetectionTrainingParameters, visionflow::param::ExampleAugments, visionflow::param::FeatureMapFilterParameters, visionflow::param::ImageMean, visionflow::param::InferenceBatchSize, visionflow::param::InputImageParam, visionflow::param::IntegrationClassifyParameter, visionflow::param::LocationFilterParameters, visionflow::param::LocationTemplates, visionflow::param::LocationTrainingParameters, visionflow::param::OCRFilterParameters, visionflow::param::OCRInferParameters, visionflow::param::OCRTemplates, visionflow::param::OCRTrainingParameters, visionflow::param::OCRUniversalModelParameters, visionflow::param::PolygonsFilterParameters, visionflow::param::PropertyObjectIdSet, visionflow::param::SampleRecommendationParameter, visionflow::param::SegmentationTrainingParameters, visionflow::param::TRTCalibParameters, visionflow::param::TrainingLog, visionflow::param::TrainingSetRecommendParameter, visionflow::param::UnsuperClassificationInferenceParameters, visionflow::param::UnsuperClassificationTrainingParameters, visionflow::param::UnsuperSegmentationInferenceParameters, visionflow::param::UnsuperSegmentationTrainingParameters, visionflow::param::ViewFilterParameters
Customize Parameters#
-
class BinaryPacks : public visionflow::param::IParameter#
Parameter to store list of binary data with name.
Public Functions
-
void insert(const std::string &key, const visionflow::Buffer &buffer)#
Insert a new binary data into the BinaryPacks. Old data with the same key will be replaced.
See also
See also
get(const std::string &key)
Note
The data in the buffer will not be copied, Which means that if you modify the data content in the Buffer later, the data in the inserted Buffer will also be modified. If this is not the behavior you expect, you can call visionflow::Buffer::clone_data() explicitly like below:
binary_packs.insert("my-data", buffer.clone_data());
- Parameters:
key – The key of the binary data.
buffer – The binary data.
-
void remove(const std::string &key)#
Remove binary data specified by the key. Do nothing if the key not found.
- Parameters:
key – The key of the binary data to be removed.
-
bool contains(const std::string &key) const#
Check if the binary data exists in the container.
- Parameters:
key – The key of the binary data
- Returns:
True if exists. Else false.
-
const visionflow::Buffer &get(const std::string &key) const#
Get the binary data specified by the key.
See also
insert(const std::string &key, const visionflow::Buffer &buffer) for more details.
Note
Do not modify the data in the buffer with out clone,
- Parameters:
key –
- Returns:
const visionflow::Buffer & The reference of the binary data.
-
std::vector<std::string> keys() const#
Get all keys in the BinaryPacks.
- Returns:
std::vector<std::string> The keys list.
-
void clear()#
Clear the container.
-
void insert(const std::string &key, const visionflow::Buffer &buffer)#
InputImage Parameters#
-
enum visionflow::param::ColorType#
Values:
-
enumerator kGray = 1#
-
enumerator kBGR = 3#
-
enumerator kGray = 1#
-
class BaseColor : public visionflow::param::SchemableParameter#
BaseColor Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const ColorType &get_color() const#
Get base_color.
Convert all images into Gray or BGR color space
See also
- Returns:
const ColorType & base_color
-
BaseColor &set_color(const ColorType &color)#
Set base_color with ColorType value.
Convert all images into Gray or BGR color space
See also
- Parameters:
color – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
BaseColor& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageMean : public visionflow::param::SchemableParameter#
ImageMean Parameter class generated by jinja2 automatically.
Image mean parameters
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::vector<double> &get_values() const#
Get image mean.
image mean values ordered same as image channels
See also
- Returns:
const std::vector<double> & image mean
-
ImageMean &set_values(const std::vector<double> &values)#
Set image mean with std::vector<double> value.
image mean values ordered same as image channels
See also
- Parameters:
values – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageMean& the reference of this object.
-
double get_values(size_t index) const#
Get value in image mean with index.
Warning
The index must be less than get_values_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
double value in image mean at index.
-
size_t get_values_size() const#
Get the size of image mean.
- Returns:
size_t the size of image mean
-
virtual const std::string &schema_str() const override#
-
class InputImageParam : public visionflow::param::SchemableParameter#
InputImageParam Parameter class generated by jinja2 automatically.
输入图像相关参数,用于控制工程的输入图像格式规范.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_visual_size() const#
Get 可视图象数.
一个visionflow.Image允许包含的可视图象数量, 多数情况下, 使用默认值1即可。若需要将多张图像当作一张图像处理, 可以设置为大于1的值。
See also
- Returns:
int 可视图象数
-
InputImageParam &set_visual_size(int visual_size)#
Set 可视图象数 with int value.
一个visionflow.Image允许包含的可视图象数量, 多数情况下, 使用默认值1即可。若需要将多张图像当作一张图像处理, 可以设置为大于1的值。
See also
- Parameters:
visual_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
InputImageParam& the reference of this object.
-
int get_thumbnail_image_size() const#
Get 缩略图尺寸大小.
缩略图长边的最大尺寸,最长边默认为512,最大不能超过512.
See also
- Returns:
int 缩略图尺寸大小
-
InputImageParam &set_thumbnail_image_size(int thumbnail_image_size)#
Set 缩略图尺寸大小 with int value.
缩略图长边的最大尺寸,最长边默认为512,最大不能超过512.
See also
- Parameters:
thumbnail_image_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
InputImageParam& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class LabelClasses : public visionflow::param::IParameter#
LabelClasses is a parameter to manage label classes.
Public Functions
-
void add(const std::string &label_name)#
Add a label name into the label classes container.
- Parameters:
label_name – The label name to be added.
-
void remove(const std::string &label_name)#
Remove a label name from the label classes container.
- Parameters:
label_name – The label name to be removed.
-
size_t size() const#
Get the number of label classes.
- Returns:
The number of label classes.
-
inline bool empty() const#
Check if the container is empty.
- Returns:
bool True if the container is empty.
-
bool contains(const std::string &label_name) const#
Check if the label classes container contains the label name.
- Parameters:
label_name – The label name to be checked.
- Returns:
True if the label classes container contains the label name.
-
std::vector<std::string> get() const#
Get all label names in the label classes container as a vector.
- Returns:
std::vector<std::string> The label names in the label classes
-
void clear()#
Clear the label classes container.
-
void add(const std::string &label_name)#
EvaluationMetrics Parameters#
-
enum visionflow::param::MetricsEvaluationType#
Values:
-
enumerator kImage = 0#
evaluation metrics of all images.
-
enumerator kAllView = 1#
evaluation metrics of all views.
-
enumerator kTestView = 2#
evaluation metrics of all test set views.
-
enumerator kTrainView = 3#
evaluation metrics of all train set views.
-
enumerator kAllRegion = 4#
evaluation metrics of all regions.
-
enumerator kTestRegion = 5#
evaluation metrics of all test set regions.
-
enumerator kTrainRegion = 6#
evaluation metrics of all train set regions.
-
enumerator kAllPixel = 7#
evaluation metrics of all pixels.
-
enumerator kTestPixel = 8#
evaluation metrics of all test set pixels.
-
enumerator kTrainPixel = 9#
evaluation metrics of all train set pixels.
-
enumerator kImage = 0#
-
enum visionflow::param::PrecisionEvaluationType#
Values:
-
enumerator kAngle = 0#
Precision evaluation of angle.
-
enumerator kPosition = 1#
Precision evaluationfor of position.
-
enumerator kAngle = 0#
-
class Table#
Public Functions
-
size_t rows() const#
The number of rows.
- Returns:
size_t
-
size_t cols() const#
The number of columns.
- Returns:
size_t
-
const std::vector<std::string> &row_header() const#
Get the row header.
- Returns:
std::vector<std::string> The row header.
-
const std::vector<std::string> &col_header() const#
Get the column header.
- Returns:
std::vector<std::string> The column header.
-
std::vector<int> row_data(size_t row) const#
Get the data of one row.
- Parameters:
row – The index of rows.
- Throws:
excepts::DataNotFound – If no such the row.
- Returns:
std::vector<int> The data of one row.
-
std::vector<int> col_data(size_t col) const#
Get the data of one column.
- Parameters:
col – The index of columns.
- Throws:
excepts::DataNotFound – If no such the column.
- Returns:
std::vector<int> The data of one column.
-
int data(size_t row, size_t col) const#
Get the data of the specific position in the table.
- Parameters:
row – The index of rows.
col – The index of columns.
- Throws:
excepts::DataNotFound – If no such the row or column.
- Returns:
int
-
int &data(size_t row, size_t col)#
Get the reference of the data of the specific position in the table.
- Parameters:
row – The index of rows.
col – The index of columns.
- Throws:
excepts::DataNotFound – If no such the row or column.
- Returns:
NO_DISCARD&
-
Table &reset_header(const std::vector<std::string> &row_header, const std::vector<std::string> &col_header)#
Reset the header of the table.
Note
If no header is set at construction time,then the first task is to reset header. The number of rows and columns of this matrix will be initialized by the length of the row and column header. If the header has been set before, the reset header will clear the previous data, please be careful.
- Parameters:
row_header – The header of row.
col_header – The header of column.
- Returns:
-
Table &set_row_data(size_t row, const std::vector<int> &data)#
Set the data of one row.
- Parameters:
row – The index of rows.
data –
- Throws:
excepts::DataNotFound – If no such the row.
excepts::InvalidArgument – The data size does not meet the row number requirement of the table.
- Returns:
-
Table &set_col_data(size_t col, const std::vector<int> &data)#
Set the data of one column.
- Parameters:
col – The index of columns.
data –
- Throws:
excepts::DataNotFound – If no such the column.
excepts::InvalidArgument – The data size does not meet the column number requirement of the table.
- Returns:
-
Table &set_data(size_t row, size_t col, int data)#
Set the data of the specific position in the table.
- Parameters:
row – The index of rows.
col – The index of columns.
data –
- Throws:
excepts::DataNotFound – If no such the row or column.
- Returns:
-
size_t rows() const#
-
class DataMetrics#
Public Functions
-
float maximum() const#
Get the maximum.
- Returns:
NO_DISCARD
-
float minimum() const#
Get the minimum.
- Returns:
NO_DISCARD
-
float average() const#
Get the average.
- Returns:
NO_DISCARD
-
float standard_deviation() const#
Get the standard deviation.
- Returns:
NO_DISCARD
-
DataMetrics &set_maximum(float value)#
Set the maximum.
- Parameters:
value –
- Returns:
-
DataMetrics &set_minimum(float value)#
Set the minimum.
- Parameters:
value –
- Returns:
-
DataMetrics &set_average(float value)#
Set the average.
- Parameters:
value –
- Returns:
-
DataMetrics &set_standard_deviation(float value)#
Set the standard deviation.
- Parameters:
value –
- Returns:
-
float maximum() const#
-
class AveragePrecision#
Public Functions
-
AveragePrecision &set_average_precision(const std::string &key, float average_precision)#
Set the specified average precision.
- Parameters:
key –
average_precision –
-
float average_precision(const std::string &key) const#
Get the specified average precision.
- Parameters:
key –
- Returns:
NO_DISCARD
-
float mean_average_precision() const#
Get the mean average precision.
- Returns:
NO_DISCARD
-
std::vector<std::string> keys() const#
Get the keys.
- Returns:
NO_DISCARD const&
-
float precision() const#
Get the precision.
Note
Returns -1, if there is no precision property.
- Returns:
NO_DISCARD
-
float recall() const#
Get the recall.
Note
Returns -1, if there is no recall property.
- Returns:
NO_DISCARD
-
AveragePrecision &set_precision(float precision)#
Set the precision.
- Parameters:
precision –
- Returns:
-
AveragePrecision &set_recall(float recall)#
Set the recall.
- Parameters:
recall –
- Returns:
-
AveragePrecision &set_average_precision(const std::string &key, float average_precision)#
-
struct IPrecisionEvaluation : public virtual visionflow::param::IParameter#
IPrecisionEvaluation feature interface for IParameter classes.
Subclassed by visionflow::param::LocationModelEvaluationMetrics
Public Functions
-
virtual std::set<PrecisionEvaluationType> precision_evaluation_keys() const = 0#
Get the types of precision evaluation in this map.
- Returns:
std::set<PrecisionEvaluationType>
-
virtual const DataMetrics &precision_evaluation(PrecisionEvaluationType type) const = 0#
Get the precision evaluation with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual DataMetrics &precision_evaluation(PrecisionEvaluationType type) = 0#
Get the reference precision evaluation with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual IPrecisionEvaluation &set_precision_evaluation(PrecisionEvaluationType type, const DataMetrics &data_metrics) = 0#
Set the precision evaluation with the type.
- Parameters:
type –
data_metrics –
- Returns:
-
virtual std::set<PrecisionEvaluationType> precision_evaluation_keys() const = 0#
-
struct ITableList : public virtual visionflow::param::IParameter#
ITableList feature interface for IParameter classes.
Subclassed by visionflow::param::LocationModelEvaluationMetrics, visionflow::param::ModelEvaluationMetrics
Public Functions
-
virtual std::vector<MetricsEvaluationType> table_keys() const = 0#
Get the types of table in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const Table &table(MetricsEvaluationType type) const = 0#
Get the table with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual Table &table(MetricsEvaluationType type) = 0#
Get the reference table with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual ITableList &set_table(MetricsEvaluationType type, const Table &table) = 0#
Set the table.
- Parameters:
type –
table –
- Returns:
-
virtual std::vector<MetricsEvaluationType> table_keys() const = 0#
-
struct IAveragePrecisionList : public virtual visionflow::param::IParameter#
IAveragePrecisionList feature interface for IParameter classes.
Subclassed by visionflow::param::LocationModelEvaluationMetrics, visionflow::param::ModelEvaluationMetrics
Public Functions
-
virtual std::vector<MetricsEvaluationType> average_precision_keys() const = 0#
Get the types of average_precision in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const AveragePrecision &average_precision(MetricsEvaluationType type) const = 0#
Get the average precision with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual AveragePrecision &average_precision(MetricsEvaluationType type) = 0#
Get the reference average precision with the type.
- Parameters:
type –
- Returns:
NO_DISCARD
-
virtual IAveragePrecisionList &set_average_precision(MetricsEvaluationType type, const AveragePrecision &average_precision) = 0#
Set the average precision.
- Parameters:
type –
average_precision –
- Returns:
-
virtual std::vector<MetricsEvaluationType> average_precision_keys() const = 0#
-
class ModelEvaluationMetrics : public virtual visionflow::param::ITableList, public virtual visionflow::param::IAveragePrecisionList#
Public Functions
-
virtual std::vector<MetricsEvaluationType> table_keys() const override#
Get the types of table in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const Table &table(MetricsEvaluationType type) const override#
Get the table with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The table with the type does not exist.
- Returns:
NO_DISCARD
-
virtual Table &table(MetricsEvaluationType type) override#
Get the reference table with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The table with the type does not exist.
- Returns:
NO_DISCARD
-
virtual ModelEvaluationMetrics &set_table(MetricsEvaluationType type, const Table &table) override#
Set the table.
- Parameters:
type –
table –
- Returns:
-
virtual std::vector<MetricsEvaluationType> average_precision_keys() const override#
Get the types of average_precision in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const AveragePrecision &average_precision(MetricsEvaluationType type) const override#
Get the average precision with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The average precision with the type does not exist.
- Returns:
NO_DISCARD
-
virtual AveragePrecision &average_precision(MetricsEvaluationType type) override#
Get the reference average precision with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The average precision with the type does not exist.
- Returns:
NO_DISCARD
-
virtual ModelEvaluationMetrics &set_average_precision(MetricsEvaluationType type, const AveragePrecision &average_precision) override#
Set the average precision.
- Parameters:
type –
average_precision –
- Returns:
-
virtual std::vector<MetricsEvaluationType> table_keys() const override#
-
class LocationModelEvaluationMetrics : public virtual visionflow::param::ITableList, public virtual visionflow::param::IPrecisionEvaluation, public virtual visionflow::param::IAveragePrecisionList#
Public Functions
-
virtual std::vector<MetricsEvaluationType> table_keys() const override#
Get the types of table in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const Table &table(MetricsEvaluationType type) const override#
Get the table with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The table with the type does not exist.
- Returns:
NO_DISCARD
-
virtual Table &table(MetricsEvaluationType type) override#
Get the reference table with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The table with the type does not exist.
- Returns:
NO_DISCARD
-
virtual LocationModelEvaluationMetrics &set_table(MetricsEvaluationType type, const Table &table) override#
Set the table.
- Parameters:
type –
table –
- Returns:
-
virtual std::set<PrecisionEvaluationType> precision_evaluation_keys() const override#
Get the types of precision evaluation in this map.
- Returns:
std::set<PrecisionEvaluationType>
-
virtual const DataMetrics &precision_evaluation(PrecisionEvaluationType type) const override#
Get the precision evaluation with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The precision evaluation with the type does not exist.
- Returns:
NO_DISCARD
-
virtual DataMetrics &precision_evaluation(PrecisionEvaluationType type) override#
Get the reference precision evaluation with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The precision evaluation with the type does not exist.
- Returns:
NO_DISCARD
-
virtual LocationModelEvaluationMetrics &set_precision_evaluation(PrecisionEvaluationType type, const DataMetrics &data_metrics) override#
Set the precision evaluation with the type.
- Parameters:
type –
data_metrics –
- Returns:
-
virtual std::vector<MetricsEvaluationType> average_precision_keys() const override#
Get the types of average_precision in this map.
- Returns:
std::vector<MetricsEvaluationType>
-
virtual const AveragePrecision &average_precision(MetricsEvaluationType type) const override#
Get the average precision with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The average precision with the type does not exist.
- Returns:
NO_DISCARD
-
virtual AveragePrecision &average_precision(MetricsEvaluationType type) override#
Get the reference average precision with the type.
- Parameters:
type –
- Throws:
excepts::DataNotFound – The average precision with the type does not exist.
- Returns:
NO_DISCARD
-
virtual LocationModelEvaluationMetrics &set_average_precision(MetricsEvaluationType type, const AveragePrecision &average_precision) override#
Set the average precision.
- Parameters:
type –
average_precision –
- Returns:
-
virtual std::vector<MetricsEvaluationType> table_keys() const override#
DataAugmentation Parameters#
-
class GeoAugSlightRotation : public visionflow::param::ISchemable#
GeoAugSlightRotation Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable to augment training data with slight rotation
See also
- Returns:
bool Enable
-
GeoAugSlightRotation &set_enable(bool enable)#
Set Enable with bool value.
Enable to augment training data with slight rotation
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugSlightRotation& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Angle Range.
Slight rotation angle range (min, max)
See also
- Returns:
const std::vector<double> & Angle Range
-
GeoAugSlightRotation &set_range(const std::vector<double> &range)#
Set Angle Range with std::vector<double> value.
Slight rotation angle range (min, max)
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugSlightRotation& the reference of this object.
-
bool range_contains(double value) const#
Check if the Angle Range contains the value.
- Returns:
bool true if the Angle Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Angle Range.
See also
- Returns:
const std::vector<double> & left point value of Angle Range
-
double get_range_right() const#
Get the right point value of Angle Range.
See also
- Returns:
const std::vector<double> & the right point value of Angle Range
-
GeoAugSlightRotation &set_range_left(double range_left)#
Set left point value of Angle Range with std::vector<double> value.
Slight rotation angle range (min, max)
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugSlightRotation& the reference of this object.
-
GeoAugSlightRotation &set_range_right(double range_right)#
Set the right point value of Angle Range with std::vector<double> value.
Slight rotation angle range (min, max)
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugSlightRotation& the reference of this object.
-
int get_step() const#
Get Angle Step.
Slight rotation angle step
See also
- Returns:
int Angle Step
-
GeoAugSlightRotation &set_step(int step)#
Set Angle Step with int value.
Slight rotation angle step
See also
- Parameters:
step – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugSlightRotation& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class GeoAugShift : public visionflow::param::ISchemable#
GeoAugShift Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable to randomly shift the training data horizontally and vertically by a certain proportion
See also
- Returns:
bool Enable
-
GeoAugShift &set_enable(bool enable)#
Set Enable with bool value.
Enable to randomly shift the training data horizontally and vertically by a certain proportion
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugShift& the reference of this object.
-
double get_shift_vertical() const#
Get Vertical Shift.
Vertical shift
See also
- Returns:
double Vertical Shift
-
GeoAugShift &set_shift_vertical(double shift_vertical)#
Set Vertical Shift with double value.
Vertical shift
See also
- Parameters:
shift_vertical – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugShift& the reference of this object.
-
double get_shift_horizontal() const#
Get Horizontal Shift.
Horizontal shift
See also
- Returns:
double Horizontal Shift
-
GeoAugShift &set_shift_horizontal(double shift_horizontal)#
Set Horizontal Shift with double value.
Horizontal shift
See also
- Parameters:
shift_horizontal – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugShift& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class GeoAugScale : public visionflow::param::ISchemable#
GeoAugScale Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable to randomly scale the training data by a certain proportion
See also
- Returns:
bool Enable
-
GeoAugScale &set_enable(bool enable)#
Set Enable with bool value.
Enable to randomly scale the training data by a certain proportion
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugScale& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Scale Range.
Scale range (min, max)
See also
- Returns:
const std::vector<double> & Scale Range
-
GeoAugScale &set_range(const std::vector<double> &range)#
Set Scale Range with std::vector<double> value.
Scale range (min, max)
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugScale& the reference of this object.
-
bool range_contains(double value) const#
Check if the Scale Range contains the value.
- Returns:
bool true if the Scale Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Scale Range.
See also
- Returns:
const std::vector<double> & left point value of Scale Range
-
double get_range_right() const#
Get the right point value of Scale Range.
See also
- Returns:
const std::vector<double> & the right point value of Scale Range
-
GeoAugScale &set_range_left(double range_left)#
Set left point value of Scale Range with std::vector<double> value.
Scale range (min, max)
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugScale& the reference of this object.
-
GeoAugScale &set_range_right(double range_right)#
Set the right point value of Scale Range with std::vector<double> value.
Scale range (min, max)
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugScale& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class GeoAugDistortion : public visionflow::param::ISchemable#
GeoAugDistortion Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable to randomly distort the training data to simulate image distortion caused by factors such as lens aging.
See also
- Returns:
bool Enable
-
GeoAugDistortion &set_enable(bool enable)#
Set Enable with bool value.
Enable to randomly distort the training data to simulate image distortion caused by factors such as lens aging.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugDistortion& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Distortion Strength Range.
Distortion Strength range, From 0 to 2, the distortion effect gradually increases
See also
- Returns:
const std::vector<double> & Distortion Strength Range
-
GeoAugDistortion &set_range(const std::vector<double> &range)#
Set Distortion Strength Range with std::vector<double> value.
Distortion Strength range, From 0 to 2, the distortion effect gradually increases
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugDistortion& the reference of this object.
-
bool range_contains(double value) const#
Check if the Distortion Strength Range contains the value.
- Returns:
bool true if the Distortion Strength Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Distortion Strength Range.
See also
- Returns:
const std::vector<double> & left point value of Distortion Strength Range
-
double get_range_right() const#
Get the right point value of Distortion Strength Range.
See also
- Returns:
const std::vector<double> & the right point value of Distortion Strength Range
-
GeoAugDistortion &set_range_left(double range_left)#
Set left point value of Distortion Strength Range with std::vector<double> value.
Distortion Strength range, From 0 to 2, the distortion effect gradually increases
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugDistortion& the reference of this object.
-
GeoAugDistortion &set_range_right(double range_right)#
Set the right point value of Distortion Strength Range with std::vector<double> value.
Distortion Strength range, From 0 to 2, the distortion effect gradually increases
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeoAugDistortion& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class GeometryAugmentation : public visionflow::param::ISchemable#
GeometryAugmentation Parameter class generated by jinja2 automatically.
Geometry augmentation parameters
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_flip_vertical() const#
Get Vertical Flip.
Flip training images vertically randomly with a probability of 0.5
See also
- Returns:
bool Vertical Flip
-
GeometryAugmentation &set_flip_vertical(bool flip_vertical)#
Set Vertical Flip with bool value.
Flip training images vertically randomly with a probability of 0.5
See also
- Parameters:
flip_vertical – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
bool get_flip_horizontal() const#
Get Horizontal Flip.
Flip training images horizontally randomly with a probability of 0.5
See also
- Returns:
bool Horizontal Flip
-
GeometryAugmentation &set_flip_horizontal(bool flip_horizontal)#
Set Horizontal Flip with bool value.
Flip training images horizontally randomly with a probability of 0.5
See also
- Parameters:
flip_horizontal – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
bool get_rotate_90() const#
Get Vertical Rotation.
Rotate the training image by a multiple of 90 degrees at random
See also
- Returns:
bool Vertical Rotation
-
GeometryAugmentation &set_rotate_90(bool rotate_90)#
Set Vertical Rotation with bool value.
Rotate the training image by a multiple of 90 degrees at random
See also
- Parameters:
rotate_90 – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
bool get_rotate_180() const#
Get Centrosymmetric Rotation.
Rotate the training image by a multiple of 180 degrees at random
See also
- Returns:
bool Centrosymmetric Rotation
-
GeometryAugmentation &set_rotate_180(bool rotate_180)#
Set Centrosymmetric Rotation with bool value.
Rotate the training image by a multiple of 180 degrees at random
See also
- Parameters:
rotate_180 – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
const GeoAugSlightRotation &get_slight_rotate() const#
Get Slight Rotation.
Slight rotation augmentation parameters
See also
- Returns:
const GeoAugSlightRotation & Slight Rotation
-
GeometryAugmentation &set_slight_rotate(const GeoAugSlightRotation &slight_rotate)#
Set Slight Rotation with GeoAugSlightRotation value.
Slight rotation augmentation parameters
See also
- Parameters:
slight_rotate – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
GeoAugSlightRotation &get_slight_rotate()#
Get mutable reference of Slight Rotation.
Slight rotation augmentation parameters
- Returns:
GeometryAugmentation& the mutable reference of the group.
-
const GeoAugShift &get_shift() const#
Get Shift.
Shift augmentations parameters
See also
- Returns:
const GeoAugShift & Shift
-
GeometryAugmentation &set_shift(const GeoAugShift &shift)#
Set Shift with GeoAugShift value.
Shift augmentations parameters
See also
- Parameters:
shift – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
GeoAugShift &get_shift()#
Get mutable reference of Shift.
Shift augmentations parameters
- Returns:
GeometryAugmentation& the mutable reference of the group.
-
const GeoAugScale &get_scale() const#
Get Scale.
Scale augmentations parameters
See also
- Returns:
const GeoAugScale & Scale
-
GeometryAugmentation &set_scale(const GeoAugScale &scale)#
Set Scale with GeoAugScale value.
Scale augmentations parameters
See also
- Parameters:
scale – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
GeoAugScale &get_scale()#
Get mutable reference of Scale.
Scale augmentations parameters
- Returns:
GeometryAugmentation& the mutable reference of the group.
-
const GeoAugDistortion &get_distortion() const#
Get Distortion.
Distortion augmentations parameters
See also
- Returns:
const GeoAugDistortion & Distortion
-
GeometryAugmentation &set_distortion(const GeoAugDistortion &distortion)#
Set Distortion with GeoAugDistortion value.
Distortion augmentations parameters
See also
- Parameters:
distortion – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
GeoAugDistortion &get_distortion()#
Get mutable reference of Distortion.
Distortion augmentations parameters
- Returns:
GeometryAugmentation& the mutable reference of the group.
-
bool get_crop() const#
Get Crop Overflow Area.
Crop out spill areas caused by geometric transformations (translation, rotation) to keep the image size unchanged
See also
- Returns:
bool Crop Overflow Area
-
GeometryAugmentation &set_crop(bool crop)#
Set Crop Overflow Area with bool value.
Crop out spill areas caused by geometric transformations (translation, rotation) to keep the image size unchanged
See also
- Parameters:
crop – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
GeometryAugmentation& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugBrightness : public visionflow::param::ISchemable#
ImageAugBrightness Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Brightness Augmentation.
Enable illumination augmentation to augment training data with linear gray scale transformations
See also
- Returns:
bool Enable Brightness Augmentation
-
ImageAugBrightness &set_enable(bool enable)#
Set Enable Brightness Augmentation with bool value.
Enable illumination augmentation to augment training data with linear gray scale transformations
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugBrightness& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Brightness Range.
The illumination intensity range 0~1 for reduction, and 1~2 for enhancement.
See also
- Returns:
const std::vector<double> & Brightness Range
-
ImageAugBrightness &set_range(const std::vector<double> &range)#
Set Brightness Range with std::vector<double> value.
The illumination intensity range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugBrightness& the reference of this object.
-
bool range_contains(double value) const#
Check if the Brightness Range contains the value.
- Returns:
bool true if the Brightness Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Brightness Range.
See also
- Returns:
const std::vector<double> & left point value of Brightness Range
-
double get_range_right() const#
Get the right point value of Brightness Range.
See also
- Returns:
const std::vector<double> & the right point value of Brightness Range
-
ImageAugBrightness &set_range_left(double range_left)#
Set left point value of Brightness Range with std::vector<double> value.
The illumination intensity range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugBrightness& the reference of this object.
-
ImageAugBrightness &set_range_right(double range_right)#
Set the right point value of Brightness Range with std::vector<double> value.
The illumination intensity range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugBrightness& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugContrast : public visionflow::param::ISchemable#
ImageAugContrast Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Contrast Augmentation.
Enable contrast augmentation to simulate the effect of different lighting conditions with different contrast
See also
- Returns:
bool Enable Contrast Augmentation
-
ImageAugContrast &set_enable(bool enable)#
Set Enable Contrast Augmentation with bool value.
Enable contrast augmentation to simulate the effect of different lighting conditions with different contrast
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugContrast& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Contrast Range.
The contrast range 0~1 for reduction, and 1~2 for enhancement.
See also
- Returns:
const std::vector<double> & Contrast Range
-
ImageAugContrast &set_range(const std::vector<double> &range)#
Set Contrast Range with std::vector<double> value.
The contrast range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugContrast& the reference of this object.
-
bool range_contains(double value) const#
Check if the Contrast Range contains the value.
- Returns:
bool true if the Contrast Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Contrast Range.
See also
- Returns:
const std::vector<double> & left point value of Contrast Range
-
double get_range_right() const#
Get the right point value of Contrast Range.
See also
- Returns:
const std::vector<double> & the right point value of Contrast Range
-
ImageAugContrast &set_range_left(double range_left)#
Set left point value of Contrast Range with std::vector<double> value.
The contrast range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugContrast& the reference of this object.
-
ImageAugContrast &set_range_right(double range_right)#
Set the right point value of Contrast Range with std::vector<double> value.
The contrast range 0~1 for reduction, and 1~2 for enhancement.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugContrast& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugColorFilter : public visionflow::param::ISchemable#
ImageAugColorFilter Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Color Filter.
Simulate the different colors lighting effects by adding filters (only color images are supported), the color filter intensity controls the max intensity of the allowed color filters, range 0~2 from low to high.
See also
- Returns:
bool Enable Color Filter
-
ImageAugColorFilter &set_enable(bool enable)#
Set Enable Color Filter with bool value.
Simulate the different colors lighting effects by adding filters (only color images are supported), the color filter intensity controls the max intensity of the allowed color filters, range 0~2 from low to high.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugColorFilter& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Color Filter Range.
Color Filter Range 0~2 from low to high.
See also
- Returns:
const std::vector<double> & Color Filter Range
-
ImageAugColorFilter &set_range(const std::vector<double> &range)#
Set Color Filter Range with std::vector<double> value.
Color Filter Range 0~2 from low to high.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugColorFilter& the reference of this object.
-
bool range_contains(double value) const#
Check if the Color Filter Range contains the value.
- Returns:
bool true if the Color Filter Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Color Filter Range.
See also
- Returns:
const std::vector<double> & left point value of Color Filter Range
-
double get_range_right() const#
Get the right point value of Color Filter Range.
See also
- Returns:
const std::vector<double> & the right point value of Color Filter Range
-
ImageAugColorFilter &set_range_left(double range_left)#
Set left point value of Color Filter Range with std::vector<double> value.
Color Filter Range 0~2 from low to high.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugColorFilter& the reference of this object.
-
ImageAugColorFilter &set_range_right(double range_right)#
Set the right point value of Color Filter Range with std::vector<double> value.
Color Filter Range 0~2 from low to high.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugColorFilter& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugNoise : public visionflow::param::ISchemable#
ImageAugNoise Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Noise.
Enable noise augmentation to augment training data with Gaussian noise
See also
- Returns:
bool Enable Noise
-
ImageAugNoise &set_enable(bool enable)#
Set Enable Noise with bool value.
Enable noise augmentation to augment training data with Gaussian noise
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugNoise& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Noise Range.
Noise Range 0~2 from low to high.
See also
- Returns:
const std::vector<double> & Noise Range
-
ImageAugNoise &set_range(const std::vector<double> &range)#
Set Noise Range with std::vector<double> value.
Noise Range 0~2 from low to high.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugNoise& the reference of this object.
-
bool range_contains(double value) const#
Check if the Noise Range contains the value.
- Returns:
bool true if the Noise Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Noise Range.
See also
- Returns:
const std::vector<double> & left point value of Noise Range
-
double get_range_right() const#
Get the right point value of Noise Range.
See also
- Returns:
const std::vector<double> & the right point value of Noise Range
-
ImageAugNoise &set_range_left(double range_left)#
Set left point value of Noise Range with std::vector<double> value.
Noise Range 0~2 from low to high.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugNoise& the reference of this object.
-
ImageAugNoise &set_range_right(double range_right)#
Set the right point value of Noise Range with std::vector<double> value.
Noise Range 0~2 from low to high.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugNoise& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugIlluminationGradient : public visionflow::param::ISchemable#
ImageAugIlluminationGradient Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Illumination Gradient.
Simulate the illumination intensity changing gradient caused by the shift of the light position, the illumination intensity range 0~2 from low to high
See also
- Returns:
bool Enable Illumination Gradient
-
ImageAugIlluminationGradient &set_enable(bool enable)#
Set Enable Illumination Gradient with bool value.
Simulate the illumination intensity changing gradient caused by the shift of the light position, the illumination intensity range 0~2 from low to high
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugIlluminationGradient& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Illumination Gradient Range.
Illumination Gradient Range 0~2 from low to high.
See also
- Returns:
const std::vector<double> & Illumination Gradient Range
-
ImageAugIlluminationGradient &set_range(const std::vector<double> &range)#
Set Illumination Gradient Range with std::vector<double> value.
Illumination Gradient Range 0~2 from low to high.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugIlluminationGradient& the reference of this object.
-
bool range_contains(double value) const#
Check if the Illumination Gradient Range contains the value.
- Returns:
bool true if the Illumination Gradient Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Illumination Gradient Range.
See also
- Returns:
const std::vector<double> & left point value of Illumination Gradient Range
-
double get_range_right() const#
Get the right point value of Illumination Gradient Range.
See also
- Returns:
const std::vector<double> & the right point value of Illumination Gradient Range
-
ImageAugIlluminationGradient &set_range_left(double range_left)#
Set left point value of Illumination Gradient Range with std::vector<double> value.
Illumination Gradient Range 0~2 from low to high.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugIlluminationGradient& the reference of this object.
-
ImageAugIlluminationGradient &set_range_right(double range_right)#
Set the right point value of Illumination Gradient Range with std::vector<double> value.
Illumination Gradient Range 0~2 from low to high.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugIlluminationGradient& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugSmoothingOrSharpening : public visionflow::param::ISchemable#
ImageAugSmoothingOrSharpening Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Smoothing/Sharpening.
Simulate a scene with more accurate lens focus by sharpening the image, sharpening intensity range 0~2 from low to high
See also
- Returns:
bool Enable Smoothing/Sharpening
-
ImageAugSmoothingOrSharpening &set_enable(bool enable)#
Set Enable Smoothing/Sharpening with bool value.
Simulate a scene with more accurate lens focus by sharpening the image, sharpening intensity range 0~2 from low to high
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugSmoothingOrSharpening& the reference of this object.
-
const std::vector<double> &get_range() const#
Get Smoothing/Sharpening Range.
Randomly smooth or sharpen training images, where -1 to 0 indicates smoothing and 0 to 1 indicates sharpening.
See also
- Returns:
const std::vector<double> & Smoothing/Sharpening Range
-
ImageAugSmoothingOrSharpening &set_range(const std::vector<double> &range)#
Set Smoothing/Sharpening Range with std::vector<double> value.
Randomly smooth or sharpen training images, where -1 to 0 indicates smoothing and 0 to 1 indicates sharpening.
See also
- Parameters:
range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugSmoothingOrSharpening& the reference of this object.
-
bool range_contains(double value) const#
Check if the Smoothing/Sharpening Range contains the value.
- Returns:
bool true if the Smoothing/Sharpening Range contains the value, otherwise false.
-
double get_range_left() const#
Get left point value of Smoothing/Sharpening Range.
See also
- Returns:
const std::vector<double> & left point value of Smoothing/Sharpening Range
-
double get_range_right() const#
Get the right point value of Smoothing/Sharpening Range.
See also
- Returns:
const std::vector<double> & the right point value of Smoothing/Sharpening Range
-
ImageAugSmoothingOrSharpening &set_range_left(double range_left)#
Set left point value of Smoothing/Sharpening Range with std::vector<double> value.
Randomly smooth or sharpen training images, where -1 to 0 indicates smoothing and 0 to 1 indicates sharpening.
See also
- Parameters:
range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugSmoothingOrSharpening& the reference of this object.
-
ImageAugSmoothingOrSharpening &set_range_right(double range_right)#
Set the right point value of Smoothing/Sharpening Range with std::vector<double> value.
Randomly smooth or sharpen training images, where -1 to 0 indicates smoothing and 0 to 1 indicates sharpening.
See also
- Parameters:
range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugSmoothingOrSharpening& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ImageAugmentation : public visionflow::param::ISchemable#
ImageAugmentation Parameter class generated by jinja2 automatically.
Image Augmentation Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const ImageAugBrightness &get_brightness() const#
Get Illumination Augmentation.
Illumination augmentation parameters
See also
- Returns:
const ImageAugBrightness & Illumination Augmentation
-
ImageAugmentation &set_brightness(const ImageAugBrightness &brightness)#
Set Illumination Augmentation with ImageAugBrightness value.
Illumination augmentation parameters
See also
- Parameters:
brightness – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugBrightness &get_brightness()#
Get mutable reference of Illumination Augmentation.
Illumination augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
const ImageAugContrast &get_contrast() const#
Get Contrast Augmentation.
Contrast augmentation parameters
See also
- Returns:
const ImageAugContrast & Contrast Augmentation
-
ImageAugmentation &set_contrast(const ImageAugContrast &contrast)#
Set Contrast Augmentation with ImageAugContrast value.
Contrast augmentation parameters
See also
- Parameters:
contrast – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugContrast &get_contrast()#
Get mutable reference of Contrast Augmentation.
Contrast augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
const ImageAugNoise &get_noise() const#
Get Noise Augmentation.
Noise augmentation parameters
See also
- Returns:
const ImageAugNoise & Noise Augmentation
-
ImageAugmentation &set_noise(const ImageAugNoise &noise)#
Set Noise Augmentation with ImageAugNoise value.
Noise augmentation parameters
See also
- Parameters:
noise – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugNoise &get_noise()#
Get mutable reference of Noise Augmentation.
Noise augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
const ImageAugSmoothingOrSharpening &get_blur() const#
Get Smoothing/Sharpening.
Blur augmentation parameters
See also
- Returns:
const ImageAugSmoothingOrSharpening & Smoothing/Sharpening
-
ImageAugmentation &set_blur(const ImageAugSmoothingOrSharpening &blur)#
Set Smoothing/Sharpening with ImageAugSmoothingOrSharpening value.
Blur augmentation parameters
See also
- Parameters:
blur – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugSmoothingOrSharpening &get_blur()#
Get mutable reference of Smoothing/Sharpening.
Blur augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
const ImageAugColorFilter &get_color_filter() const#
Get Color Filter.
Color filter augmentation parameters
See also
- Returns:
const ImageAugColorFilter & Color Filter
-
ImageAugmentation &set_color_filter(const ImageAugColorFilter &color_filter)#
Set Color Filter with ImageAugColorFilter value.
Color filter augmentation parameters
See also
- Parameters:
color_filter – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugColorFilter &get_color_filter()#
Get mutable reference of Color Filter.
Color filter augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
const ImageAugIlluminationGradient &get_illumination_gradient() const#
Get Illumination Gradient.
Illumination gradient augmentation parameters
See also
- Returns:
const ImageAugIlluminationGradient & Illumination Gradient
-
ImageAugmentation &set_illumination_gradient(const ImageAugIlluminationGradient &illumination_gradient)#
Set Illumination Gradient with ImageAugIlluminationGradient value.
Illumination gradient augmentation parameters
See also
- Parameters:
illumination_gradient – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ImageAugmentation& the reference of this object.
-
ImageAugIlluminationGradient &get_illumination_gradient()#
Get mutable reference of Illumination Gradient.
Illumination gradient augmentation parameters
- Returns:
ImageAugmentation& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class DataAugmentation : public visionflow::param::ISchemable#
DataAugmentation Parameter class generated by jinja2 automatically.
Data Augmentation Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const GeometryAugmentation &get_geometry_augmentation() const#
Get Geometry Augmentation.
Geometry augmentation parameters
See also
- Returns:
const GeometryAugmentation & Geometry Augmentation
-
DataAugmentation &set_geometry_augmentation(const GeometryAugmentation &geometry_augmentation)#
Set Geometry Augmentation with GeometryAugmentation value.
Geometry augmentation parameters
See also
- Parameters:
geometry_augmentation – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DataAugmentation& the reference of this object.
-
GeometryAugmentation &get_geometry_augmentation()#
Get mutable reference of Geometry Augmentation.
Geometry augmentation parameters
- Returns:
DataAugmentation& the mutable reference of the group.
-
const ImageAugmentation &get_image_augmentation() const#
Get Image Augmentation.
Image augmentation parameters
See also
- Returns:
const ImageAugmentation & Image Augmentation
-
DataAugmentation &set_image_augmentation(const ImageAugmentation &image_augmentation)#
Set Image Augmentation with ImageAugmentation value.
Image augmentation parameters
See also
- Parameters:
image_augmentation – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DataAugmentation& the reference of this object.
-
ImageAugmentation &get_image_augmentation()#
Get mutable reference of Image Augmentation.
Image augmentation parameters
- Returns:
DataAugmentation& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
Segmentation Training Parameters#
-
class SegmentationInputShape : public visionflow::param::ISchemable#
SegmentationInputShape Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Custom Input Shape.
Enable to Customize Network Input Shape
See also
- Returns:
bool Enable Custom Input Shape
-
SegmentationInputShape &set_enable(bool enable)#
Set Enable Custom Input Shape with bool value.
Enable to Customize Network Input Shape
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationInputShape& the reference of this object.
-
int get_base_input_width() const#
Get Base Input Width.
Base Input Width
See also
- Returns:
int Base Input Width
-
SegmentationInputShape &set_base_input_width(int base_input_width)#
Set Base Input Width with int value.
Base Input Width
See also
- Parameters:
base_input_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationInputShape& the reference of this object.
-
int get_base_input_height() const#
Get Base Input Height.
Base Input Height
See also
- Returns:
int Base Input Height
-
SegmentationInputShape &set_base_input_height(int base_input_height)#
Set Base Input Height with int value.
Base Input Height
See also
- Parameters:
base_input_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationInputShape& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
enum visionflow::param::ImageSplitMode#
Values:
-
enumerator kAuto = 0#
-
enumerator kManual = 1#
-
enumerator kAuto = 0#
-
class SegmentationImageSplit : public visionflow::param::ISchemable#
SegmentationImageSplit Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const ImageSplitMode &get_split_set_method() const#
Get Split Method.
kAuto : The algorithm adapts the recommended resolution levelkManual according to the original map size and minimum marking size: the resolution level is based on manual setting view : The actual resolution level can be viewed in Help-View log. Br/>Brief description of algorithm : The algorithm scales the short edge of the image to 256*resolution level before feeding to the network, and the long edge scales equally to the input network.
See also
- Returns:
const ImageSplitMode & Split Method
-
SegmentationImageSplit &set_split_set_method(const ImageSplitMode &split_set_method)#
Set Split Method with ImageSplitMode value.
kAuto : The algorithm adapts the recommended resolution levelkManual according to the original map size and minimum marking size: the resolution level is based on manual setting view : The actual resolution level can be viewed in Help-View log. Br/>Brief description of algorithm : The algorithm scales the short edge of the image to 256*resolution level before feeding to the network, and the long edge scales equally to the input network.
See also
- Parameters:
split_set_method – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationImageSplit& the reference of this object.
-
int get_max_split() const#
Get Resolution Level.
The short side of the image input will be scaled to (base_size*Resolution Level), and the long side will be scaled proportionally. When the max precision set is higher than the required precision of the algorithm, the precision will be automatically reduced. The applied precision can be acquired from figuration files of the trained model
See also
- Returns:
int Resolution Level
-
SegmentationImageSplit &set_max_split(int max_split)#
Set Resolution Level with int value.
The short side of the image input will be scaled to (base_size*Resolution Level), and the long side will be scaled proportionally. When the max precision set is higher than the required precision of the algorithm, the precision will be automatically reduced. The applied precision can be acquired from figuration files of the trained model
See also
- Parameters:
max_split – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationImageSplit& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class SegmentationModelParameters : public visionflow::param::ISchemable#
SegmentationModelParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::string &get_model_arch() const#
Get Model Architecture.
The ‘Small Defects’ model has better detection effect on small defects, and the ‘Comprehensive Model’ model has better comprehensive effect. Recommended to use the ‘Comprehensive Model’ model when the detection effect of the Small Defects model is poor. ‘Contrastive Model’ is only for contrastive segmentation
See also
- Returns:
const std::string & Model Architecture
-
SegmentationModelParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
The ‘Small Defects’ model has better detection effect on small defects, and the ‘Comprehensive Model’ model has better comprehensive effect. Recommended to use the ‘Comprehensive Model’ model when the detection effect of the Small Defects model is poor. ‘Contrastive Model’ is only for contrastive segmentation
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationModelParameters& the reference of this object.
-
bool get_shift_stable() const#
Get With Shift Stable.
With shift stable, the adaptability of the model to the slight shift of the target can be improved, but the training and inference speed will be 20 percent slower
See also
- Returns:
bool With Shift Stable
-
SegmentationModelParameters &set_shift_stable(bool shift_stable)#
Set With Shift Stable with bool value.
With shift stable, the adaptability of the model to the slight shift of the target can be improved, but the training and inference speed will be 20 percent slower
See also
- Parameters:
shift_stable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationModelParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class SegmentationTrainingSampleStrategy : public visionflow::param::ISchemable#
SegmentationTrainingSampleStrategy Parameter class generated by jinja2 automatically.
Segmentation training parameters to control the the input data.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_hard_case_rate() const#
Get Sample Rate of Hard Case.
The larger the value set, the higher the attention to the hard case
See also
- Returns:
double Sample Rate of Hard Case
-
SegmentationTrainingSampleStrategy &set_hard_case_rate(double hard_case_rate)#
Set Sample Rate of Hard Case with double value.
The larger the value set, the higher the attention to the hard case
See also
- Parameters:
hard_case_rate – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingSampleStrategy& the reference of this object.
-
int get_hard_case_split() const#
Get Hard Case Split.
Number of hard case discrete coordinates, Default value is recommended.
See also
- Returns:
int Hard Case Split
-
SegmentationTrainingSampleStrategy &set_hard_case_split(int hard_case_split)#
Set Hard Case Split with int value.
Number of hard case discrete coordinates, Default value is recommended.
See also
- Parameters:
hard_case_split – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingSampleStrategy& the reference of this object.
-
const SegmentationImageSplit &get_image_split() const#
Get Image Split.
Image Split Parameters
See also
- Returns:
const SegmentationImageSplit & Image Split
-
SegmentationTrainingSampleStrategy &set_image_split(const SegmentationImageSplit &image_split)#
Set Image Split with SegmentationImageSplit value.
Image Split Parameters
See also
- Parameters:
image_split – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingSampleStrategy& the reference of this object.
-
SegmentationImageSplit &get_image_split()#
Get mutable reference of Image Split.
Image Split Parameters
- Returns:
SegmentationTrainingSampleStrategy& the mutable reference of the group.
-
const SegmentationInputShape &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const SegmentationInputShape & Input Shape
-
SegmentationTrainingSampleStrategy &set_input_shape(const SegmentationInputShape &input_shape)#
Set Input Shape with SegmentationInputShape value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingSampleStrategy& the reference of this object.
-
SegmentationInputShape &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
SegmentationTrainingSampleStrategy& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class SegmentationTrainingParameters : public visionflow::param::SchemableParameter#
SegmentationTrainingParameters Parameter class generated by jinja2 automatically.
Segmentation Training Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
SegmentationTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Training Batch Size
-
SegmentationTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
const SegmentationTrainingSampleStrategy &get_sampling_strategy() const#
Get Sampling Strategy.
Sampling Strategy Parameters
See also
- Returns:
const SegmentationTrainingSampleStrategy & Sampling Strategy
-
SegmentationTrainingParameters &set_sampling_strategy(const SegmentationTrainingSampleStrategy &sampling_strategy)#
Set Sampling Strategy with SegmentationTrainingSampleStrategy value.
Sampling Strategy Parameters
See also
- Parameters:
sampling_strategy – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
SegmentationTrainingSampleStrategy &get_sampling_strategy()#
Get mutable reference of Sampling Strategy.
Sampling Strategy Parameters
- Returns:
SegmentationTrainingParameters& the mutable reference of the group.
-
const TrainingMode &get_training_mode() const#
Get Training Mode.
The ‘Normal’ mode is the default mode, which trains the model from scratch/pre-train. The ‘Incremental’ mode uses an incremental training algorithm to update the model parameters based on new data, without retraining the entire model from scratch.
See also
- Returns:
const TrainingMode & Training Mode
-
SegmentationTrainingParameters &set_training_mode(const TrainingMode &training_mode)#
Set Training Mode with TrainingMode value.
The ‘Normal’ mode is the default mode, which trains the model from scratch/pre-train. The ‘Incremental’ mode uses an incremental training algorithm to update the model parameters based on new data, without retraining the entire model from scratch.
See also
- Parameters:
training_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
bool get_only_check() const#
Get Only Check.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Returns:
bool Only Check
-
SegmentationTrainingParameters &set_only_check(bool only_check)#
Set Only Check with bool value.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Parameters:
only_check – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
const SegmentationModelParameters &get_model_param() const#
Get Model Parameters.
Select the appropriate basic model according to different detection targets and speed requirements
See also
- Returns:
const SegmentationModelParameters & Model Parameters
-
SegmentationTrainingParameters &set_model_param(const SegmentationModelParameters &model_param)#
Set Model Parameters with SegmentationModelParameters value.
Select the appropriate basic model according to different detection targets and speed requirements
See also
- Parameters:
model_param – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
SegmentationModelParameters &get_model_param()#
Get mutable reference of Model Parameters.
Select the appropriate basic model according to different detection targets and speed requirements
- Returns:
SegmentationTrainingParameters& the mutable reference of the group.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
SegmentationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SegmentationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
SegmentationTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class BinaryTrainingParameters : public visionflow::param::IParameter#
Parameter class to store some binary configuration information that the parameter generator can not represent for the model trainer.
Public Functions
-
BinaryTrainingParameters &set_global_mask(const geometry::MultiPolygon2f &masks)#
Set the global mask. Each sub image in the training views will be masked with the image mean values before training.
- Parameters:
masks – The mask polygons.
- Returns:
BinaryTrainingParameters& The parameter instance.
-
const geometry::MultiPolygon2f &get_global_mask() const#
Get the global mask.
- Returns:
const geometry::MultiPolygon2f& The global mask polygons
-
BinaryTrainingParameters &set_global_mask(const geometry::MultiPolygon2f &masks)#
Unsuper Segmentation Training Parameters#
-
class UnsuperSegmentationInputShape : public visionflow::param::ISchemable#
UnsuperSegmentationInputShape Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Custom Sampling Shape.
Enable to Customize Network Sampling Input Shape
See also
- Returns:
bool Enable Custom Sampling Shape
-
UnsuperSegmentationInputShape &set_enable(bool enable)#
Set Enable Custom Sampling Shape with bool value.
Enable to Customize Network Sampling Input Shape
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationInputShape& the reference of this object.
-
int get_sampling_width() const#
Get Sampling Input Width.
Sampling Input Width
See also
- Returns:
int Sampling Input Width
-
UnsuperSegmentationInputShape &set_sampling_width(int sampling_width)#
Set Sampling Input Width with int value.
Sampling Input Width
See also
- Parameters:
sampling_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationInputShape& the reference of this object.
-
int get_sampling_height() const#
Get Sampling Input Height.
Sampling Input Height
See also
- Returns:
int Sampling Input Height
-
UnsuperSegmentationInputShape &set_sampling_height(int sampling_height)#
Set Sampling Input Height with int value.
Sampling Input Height
See also
- Parameters:
sampling_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationInputShape& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class UnsuperSegmentationTrainingParameters : public visionflow::param::SchemableParameter#
UnsuperSegmentationTrainingParameters Parameter class generated by jinja2 automatically.
Unsuper Segmentation Training Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epochs.
Number of epochs to train
See also
- Returns:
int Epochs
-
UnsuperSegmentationTrainingParameters &set_epoch(int epoch)#
Set Epochs with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Batch Size
-
UnsuperSegmentationTrainingParameters &set_batch_size(int batch_size)#
Set Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationTrainingParameters& the reference of this object.
-
const UnsuperSegmentationSamplingParameters &get_sampling_strategy() const#
Get Sampling Strategy.
Sampling Parameters
See also
- Returns:
const UnsuperSegmentationSamplingParameters & Sampling Strategy
-
UnsuperSegmentationTrainingParameters &set_sampling_strategy(const UnsuperSegmentationSamplingParameters &sampling_strategy)#
Set Sampling Strategy with UnsuperSegmentationSamplingParameters value.
Sampling Parameters
See also
- Parameters:
sampling_strategy – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationTrainingParameters& the reference of this object.
-
UnsuperSegmentationSamplingParameters &get_sampling_strategy()#
Get mutable reference of Sampling Strategy.
Sampling Parameters
- Returns:
UnsuperSegmentationTrainingParameters& the mutable reference of the group.
-
const UnsuperSegmentationModelParameters &get_model_param() const#
Get Model Parameters.
Model Parameters
See also
- Returns:
const UnsuperSegmentationModelParameters & Model Parameters
-
UnsuperSegmentationTrainingParameters &set_model_param(const UnsuperSegmentationModelParameters &model_param)#
Set Model Parameters with UnsuperSegmentationModelParameters value.
Model Parameters
See also
- Parameters:
model_param – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationTrainingParameters& the reference of this object.
-
UnsuperSegmentationModelParameters &get_model_param()#
Get mutable reference of Model Parameters.
Model Parameters
- Returns:
UnsuperSegmentationTrainingParameters& the mutable reference of the group.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
UnsuperSegmentationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
UnsuperSegmentationTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class UnsuperSegmentationSamplingParameters : public visionflow::param::ISchemable#
UnsuperSegmentationSamplingParameters Parameter class generated by jinja2 automatically.
Unsuper Segmentation Training Sample Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const UnsuperSegmentationInputShape &get_sampling_input_shape() const#
Get Input Shape.
Input Sampling Shape Parameters
See also
- Returns:
const UnsuperSegmentationInputShape & Input Shape
-
UnsuperSegmentationSamplingParameters &set_sampling_input_shape(const UnsuperSegmentationInputShape &sampling_input_shape)#
Set Input Shape with UnsuperSegmentationInputShape value.
Input Sampling Shape Parameters
See also
- Parameters:
sampling_input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationSamplingParameters& the reference of this object.
-
UnsuperSegmentationInputShape &get_sampling_input_shape()#
Get mutable reference of Input Shape.
Input Sampling Shape Parameters
- Returns:
UnsuperSegmentationSamplingParameters& the mutable reference of the group.
-
bool get_local_sampling() const#
Get Local Sampling Strategy.
when enable : Crop a patch(Input Shape) of image to train instead of whole image, increasing train speed but might make performance decline when image is complex
See also
- Returns:
bool Local Sampling Strategy
-
UnsuperSegmentationSamplingParameters &set_local_sampling(bool local_sampling)#
Set Local Sampling Strategy with bool value.
when enable : Crop a patch(Input Shape) of image to train instead of whole image, increasing train speed but might make performance decline when image is complex
See also
- Parameters:
local_sampling – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationSamplingParameters& the reference of this object.
-
int get_sampling_resolution() const#
Get Sampling Resolution Level.
The short side of the image input will be scaled to (Sampling Input Size * Sampling Resolution), and the long side will be scaled proportionally.
See also
- Returns:
int Sampling Resolution Level
-
UnsuperSegmentationSamplingParameters &set_sampling_resolution(int sampling_resolution)#
Set Sampling Resolution Level with int value.
The short side of the image input will be scaled to (Sampling Input Size * Sampling Resolution), and the long side will be scaled proportionally.
See also
- Parameters:
sampling_resolution – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationSamplingParameters& the reference of this object.
-
bool get_image_consistent_optimize() const#
Get High Consistent Image.
enable when image looks like the same in all region, such as texture image, it helps speed up train and might get better performance in such kind of image
See also
- Returns:
bool High Consistent Image
-
UnsuperSegmentationSamplingParameters &set_image_consistent_optimize(bool image_consistent_optimize)#
Set High Consistent Image with bool value.
enable when image looks like the same in all region, such as texture image, it helps speed up train and might get better performance in such kind of image
See also
- Parameters:
image_consistent_optimize – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationSamplingParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class UnsuperSegmentationModelParameters : public visionflow::param::ISchemable#
UnsuperSegmentationModelParameters Parameter class generated by jinja2 automatically.
Unsuper Segmentation Model Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::string &get_model_arch() const#
Get Model Architecture.
General Model training slow but get better result, using for complex image; Training Fast Model training fast but might get worse performance than General Model
See also
- Returns:
const std::string & Model Architecture
-
UnsuperSegmentationModelParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
General Model training slow but get better result, using for complex image; Training Fast Model training fast but might get worse performance than General Model
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationModelParameters& the reference of this object.
-
bool get_add_logical_model() const#
Get Logical Defect Detect.
increase detect performance for logical defect,such as character lost or duplicate, but increasing training and inference speed
See also
- Returns:
bool Logical Defect Detect
-
UnsuperSegmentationModelParameters &set_add_logical_model(bool add_logical_model)#
Set Logical Defect Detect with bool value.
increase detect performance for logical defect,such as character lost or duplicate, but increasing training and inference speed
See also
- Parameters:
add_logical_model – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationModelParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Unsuper Classification Training Parameters#
-
class UnsuperClassificationInputShape : public visionflow::param::ISchemable#
UnsuperClassificationInputShape Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Custom Input Shape.
Enable to Customize Network Input Shape
See also
- Returns:
bool Enable Custom Input Shape
-
UnsuperClassificationInputShape &set_enable(bool enable)#
Set Enable Custom Input Shape with bool value.
Enable to Customize Network Input Shape
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationInputShape& the reference of this object.
-
int get_base_input_width() const#
Get Base Input Width.
Base Input Width
See also
- Returns:
int Base Input Width
-
UnsuperClassificationInputShape &set_base_input_width(int base_input_width)#
Set Base Input Width with int value.
Base Input Width
See also
- Parameters:
base_input_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationInputShape& the reference of this object.
-
int get_base_input_height() const#
Get Base Input Height.
Base Input Height
See also
- Returns:
int Base Input Height
-
UnsuperClassificationInputShape &set_base_input_height(int base_input_height)#
Set Base Input Height with int value.
Base Input Height
See also
- Parameters:
base_input_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationInputShape& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class UnsuperClassificationTrainingParameters : public visionflow::param::SchemableParameter#
UnsuperClassificationTrainingParameters Parameter class generated by jinja2 automatically.
Unsuper Classification Training Parameters Group.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
UnsuperClassificationTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Training Batch Size
-
UnsuperClassificationTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationTrainingParameters& the reference of this object.
-
const UnsuperClassificationInputShape &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const UnsuperClassificationInputShape & Input Shape
-
UnsuperClassificationTrainingParameters &set_input_shape(const UnsuperClassificationInputShape &input_shape)#
Set Input Shape with UnsuperClassificationInputShape value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationTrainingParameters& the reference of this object.
-
UnsuperClassificationInputShape &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
UnsuperClassificationTrainingParameters& the mutable reference of the group.
-
const std::string &get_model_arch() const#
Get Model Architecture.
Currently only one baseline model
See also
- Returns:
const std::string & Model Architecture
-
UnsuperClassificationTrainingParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
Currently only one baseline model
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationTrainingParameters& the reference of this object.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
UnsuperClassificationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
UnsuperClassificationTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
Unsuper Segmentation Inference Parameters#
-
class UnsuperDefectRadius : public visionflow::param::ISchemable#
UnsuperDefectRadius Parameter class generated by jinja2 automatically.
Parameters using for define defect size
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_auto_set() const#
Get Automatic Setting.
Network adjust defect radius automatically
See also
- Returns:
bool Automatic Setting
-
UnsuperDefectRadius &set_auto_set(bool auto_set)#
Set Automatic Setting with bool value.
Network adjust defect radius automatically
See also
- Parameters:
auto_set – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperDefectRadius& the reference of this object.
-
int get_size() const#
Get Defect Radius.
defect size
See also
- Returns:
int Defect Radius
-
UnsuperDefectRadius &set_size(int size)#
Set Defect Radius with int value.
defect size
See also
- Parameters:
size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperDefectRadius& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class UnsuperSegmentationInferenceParameters : public visionflow::param::SchemableParameter#
UnsuperSegmentationInferenceParameters Parameter class generated by jinja2 automatically.
UnsuperSegmentationInferenceParameters
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_minimum_defect_size() const#
Get Minimum Defect Size.
Minimum detect that customer want to detect, but too small will increase overkill
See also
- Returns:
int Minimum Defect Size
-
UnsuperSegmentationInferenceParameters &set_minimum_defect_size(int minimum_defect_size)#
Set Minimum Defect Size with int value.
Minimum detect that customer want to detect, but too small will increase overkill
See also
- Parameters:
minimum_defect_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationInferenceParameters& the reference of this object.
-
int get_sampling_density() const#
Get Sampling Density.
smaller value will make result more precise, but increase inference time
See also
- Returns:
int Sampling Density
-
UnsuperSegmentationInferenceParameters &set_sampling_density(int sampling_density)#
Set Sampling Density with int value.
smaller value will make result more precise, but increase inference time
See also
- Parameters:
sampling_density – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperSegmentationInferenceParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Unsuper Classification Inference Parameters#
-
class UnsuperClassificationInferenceParameters : public visionflow::param::SchemableParameter#
UnsuperClassificationInferenceParameters Parameter class generated by jinja2 automatically.
Parameters using for unsuper classification inference
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_ng_thresh() const#
Get Ng Thresh.
image will be set to ok when score < Ng Thresh, and set to ng when score > Ng Thresh
See also
- Returns:
double Ng Thresh
-
UnsuperClassificationInferenceParameters &set_ng_thresh(double ng_thresh)#
Set Ng Thresh with double value.
image will be set to ok when score < Ng Thresh, and set to ng when score > Ng Thresh
See also
- Parameters:
ng_thresh – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationInferenceParameters& the reference of this object.
-
const UnsuperDefectRadius &get_defect_radius() const#
Get Defect Radius.
Expected defect size
See also
- Returns:
const UnsuperDefectRadius & Defect Radius
-
UnsuperClassificationInferenceParameters &set_defect_radius(const UnsuperDefectRadius &defect_radius)#
Set Defect Radius with UnsuperDefectRadius value.
Expected defect size
See also
- Parameters:
defect_radius – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
UnsuperClassificationInferenceParameters& the reference of this object.
-
UnsuperDefectRadius &get_defect_radius()#
Get mutable reference of Defect Radius.
Expected defect size
- Returns:
UnsuperClassificationInferenceParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
Filter Parameters#
-
class AxialSideLengthRange : public visionflow::param::ISchemable#
AxialSideLengthRange Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Axial Side Length Filter.
Enable this option to filter regions with axial side length.
See also
- Returns:
bool Axial Side Length Filter
-
AxialSideLengthRange &set_enable(bool enable)#
Set Axial Side Length Filter with bool value.
Enable this option to filter regions with axial side length.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
const std::vector<int> &get_x_axis_side_range() const#
Get X-Axis Side Length Range.
The X-axis side length range of regions you want to keep.
See also
- Returns:
const std::vector<int> & X-Axis Side Length Range
-
AxialSideLengthRange &set_x_axis_side_range(const std::vector<int> &x_axis_side_range)#
Set X-Axis Side Length Range with std::vector<int> value.
The X-axis side length range of regions you want to keep.
See also
- Parameters:
x_axis_side_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
bool x_axis_side_range_contains(int value) const#
Check if the X-Axis Side Length Range contains the value.
- Returns:
bool true if the X-Axis Side Length Range contains the value, otherwise false.
-
int get_x_axis_side_range_left() const#
Get left point value of X-Axis Side Length Range.
See also
- Returns:
const std::vector<int> & left point value of X-Axis Side Length Range
-
int get_x_axis_side_range_right() const#
Get the right point value of X-Axis Side Length Range.
See also
- Returns:
const std::vector<int> & the right point value of X-Axis Side Length Range
-
AxialSideLengthRange &set_x_axis_side_range_left(int x_axis_side_range_left)#
Set left point value of X-Axis Side Length Range with std::vector<int> value.
The X-axis side length range of regions you want to keep.
See also
- Parameters:
x_axis_side_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
AxialSideLengthRange &set_x_axis_side_range_right(int x_axis_side_range_right)#
Set the right point value of X-Axis Side Length Range with std::vector<int> value.
The X-axis side length range of regions you want to keep.
See also
- Parameters:
x_axis_side_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
const std::vector<int> &get_y_axis_side_range() const#
Get Y-Axis Side Length Range.
The Y-axis side length range of regions you want to keep.
See also
- Returns:
const std::vector<int> & Y-Axis Side Length Range
-
AxialSideLengthRange &set_y_axis_side_range(const std::vector<int> &y_axis_side_range)#
Set Y-Axis Side Length Range with std::vector<int> value.
The Y-axis side length range of regions you want to keep.
See also
- Parameters:
y_axis_side_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
bool y_axis_side_range_contains(int value) const#
Check if the Y-Axis Side Length Range contains the value.
- Returns:
bool true if the Y-Axis Side Length Range contains the value, otherwise false.
-
int get_y_axis_side_range_left() const#
Get left point value of Y-Axis Side Length Range.
See also
- Returns:
const std::vector<int> & left point value of Y-Axis Side Length Range
-
int get_y_axis_side_range_right() const#
Get the right point value of Y-Axis Side Length Range.
See also
- Returns:
const std::vector<int> & the right point value of Y-Axis Side Length Range
-
AxialSideLengthRange &set_y_axis_side_range_left(int y_axis_side_range_left)#
Set left point value of Y-Axis Side Length Range with std::vector<int> value.
The Y-axis side length range of regions you want to keep.
See also
- Parameters:
y_axis_side_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
AxialSideLengthRange &set_y_axis_side_range_right(int y_axis_side_range_right)#
Set the right point value of Y-Axis Side Length Range with std::vector<int> value.
The Y-axis side length range of regions you want to keep.
See also
- Parameters:
y_axis_side_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
const std::vector<double> &get_x_y_ratio_range() const#
Get X/Y Ratio Range.
The range of the ratio of X-axis side length to the Y-axis side length of the regions that you want to keep.
See also
- Returns:
const std::vector<double> & X/Y Ratio Range
-
AxialSideLengthRange &set_x_y_ratio_range(const std::vector<double> &x_y_ratio_range)#
Set X/Y Ratio Range with std::vector<double> value.
The range of the ratio of X-axis side length to the Y-axis side length of the regions that you want to keep.
See also
- Parameters:
x_y_ratio_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
bool x_y_ratio_range_contains(double value) const#
Check if the X/Y Ratio Range contains the value.
- Returns:
bool true if the X/Y Ratio Range contains the value, otherwise false.
-
double get_x_y_ratio_range_left() const#
Get left point value of X/Y Ratio Range.
See also
- Returns:
const std::vector<double> & left point value of X/Y Ratio Range
-
double get_x_y_ratio_range_right() const#
Get the right point value of X/Y Ratio Range.
See also
- Returns:
const std::vector<double> & the right point value of X/Y Ratio Range
-
AxialSideLengthRange &set_x_y_ratio_range_left(double x_y_ratio_range_left)#
Set left point value of X/Y Ratio Range with std::vector<double> value.
The range of the ratio of X-axis side length to the Y-axis side length of the regions that you want to keep.
See also
- Parameters:
x_y_ratio_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
AxialSideLengthRange &set_x_y_ratio_range_right(double x_y_ratio_range_right)#
Set the right point value of X/Y Ratio Range with std::vector<double> value.
The range of the ratio of X-axis side length to the Y-axis side length of the regions that you want to keep.
See also
- Parameters:
x_y_ratio_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AxialSideLengthRange& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class SideLengthRange : public visionflow::param::ISchemable#
SideLengthRange Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Side Length Filter.
Enable this option to filter regions with long side length and short side length.
See also
- Returns:
bool Side Length Filter
-
SideLengthRange &set_enable(bool enable)#
Set Side Length Filter with bool value.
Enable this option to filter regions with long side length and short side length.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
bool get_on_rotate_rect() const#
Get Filter On Min-Area-Rect.
The “Longer Side Length Range” and “Shorter Side Length Range” will be applied to the min-area rotate rectangle of each region if this option is enabled, otherwise, they will be applied to the axial bounding rect.
See also
- Returns:
bool Filter On Min-Area-Rect
-
SideLengthRange &set_on_rotate_rect(bool on_rotate_rect)#
Set Filter On Min-Area-Rect with bool value.
The “Longer Side Length Range” and “Shorter Side Length Range” will be applied to the min-area rotate rectangle of each region if this option is enabled, otherwise, they will be applied to the axial bounding rect.
See also
- Parameters:
on_rotate_rect – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
const std::vector<int> &get_longer_side_range() const#
Get Longer Side Length Range.
The longer side length range of regions you want to keep.
See also
- Returns:
const std::vector<int> & Longer Side Length Range
-
SideLengthRange &set_longer_side_range(const std::vector<int> &longer_side_range)#
Set Longer Side Length Range with std::vector<int> value.
The longer side length range of regions you want to keep.
See also
- Parameters:
longer_side_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
bool longer_side_range_contains(int value) const#
Check if the Longer Side Length Range contains the value.
- Returns:
bool true if the Longer Side Length Range contains the value, otherwise false.
-
int get_longer_side_range_left() const#
Get left point value of Longer Side Length Range.
See also
- Returns:
const std::vector<int> & left point value of Longer Side Length Range
-
int get_longer_side_range_right() const#
Get the right point value of Longer Side Length Range.
See also
- Returns:
const std::vector<int> & the right point value of Longer Side Length Range
-
SideLengthRange &set_longer_side_range_left(int longer_side_range_left)#
Set left point value of Longer Side Length Range with std::vector<int> value.
The longer side length range of regions you want to keep.
See also
- Parameters:
longer_side_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
SideLengthRange &set_longer_side_range_right(int longer_side_range_right)#
Set the right point value of Longer Side Length Range with std::vector<int> value.
The longer side length range of regions you want to keep.
See also
- Parameters:
longer_side_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
const std::vector<int> &get_shorter_side_range() const#
Get Shorter Side Length Range.
The shorter side length range of regions you want to keep.
See also
- Returns:
const std::vector<int> & Shorter Side Length Range
-
SideLengthRange &set_shorter_side_range(const std::vector<int> &shorter_side_range)#
Set Shorter Side Length Range with std::vector<int> value.
The shorter side length range of regions you want to keep.
See also
- Parameters:
shorter_side_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
bool shorter_side_range_contains(int value) const#
Check if the Shorter Side Length Range contains the value.
- Returns:
bool true if the Shorter Side Length Range contains the value, otherwise false.
-
int get_shorter_side_range_left() const#
Get left point value of Shorter Side Length Range.
See also
- Returns:
const std::vector<int> & left point value of Shorter Side Length Range
-
int get_shorter_side_range_right() const#
Get the right point value of Shorter Side Length Range.
See also
- Returns:
const std::vector<int> & the right point value of Shorter Side Length Range
-
SideLengthRange &set_shorter_side_range_left(int shorter_side_range_left)#
Set left point value of Shorter Side Length Range with std::vector<int> value.
The shorter side length range of regions you want to keep.
See also
- Parameters:
shorter_side_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
SideLengthRange &set_shorter_side_range_right(int shorter_side_range_right)#
Set the right point value of Shorter Side Length Range with std::vector<int> value.
The shorter side length range of regions you want to keep.
See also
- Parameters:
shorter_side_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
const std::vector<double> &get_aspect_ratio_range() const#
Get Aspect Ratio Range.
The range of the ratio of the short side to the long side of the regions that you want to keep.
See also
- Returns:
const std::vector<double> & Aspect Ratio Range
-
SideLengthRange &set_aspect_ratio_range(const std::vector<double> &aspect_ratio_range)#
Set Aspect Ratio Range with std::vector<double> value.
The range of the ratio of the short side to the long side of the regions that you want to keep.
See also
- Parameters:
aspect_ratio_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
bool aspect_ratio_range_contains(double value) const#
Check if the Aspect Ratio Range contains the value.
- Returns:
bool true if the Aspect Ratio Range contains the value, otherwise false.
-
double get_aspect_ratio_range_left() const#
Get left point value of Aspect Ratio Range.
See also
- Returns:
const std::vector<double> & left point value of Aspect Ratio Range
-
double get_aspect_ratio_range_right() const#
Get the right point value of Aspect Ratio Range.
See also
- Returns:
const std::vector<double> & the right point value of Aspect Ratio Range
-
SideLengthRange &set_aspect_ratio_range_left(double aspect_ratio_range_left)#
Set left point value of Aspect Ratio Range with std::vector<double> value.
The range of the ratio of the short side to the long side of the regions that you want to keep.
See also
- Parameters:
aspect_ratio_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
SideLengthRange &set_aspect_ratio_range_right(double aspect_ratio_range_right)#
Set the right point value of Aspect Ratio Range with std::vector<double> value.
The range of the ratio of the short side to the long side of the regions that you want to keep.
See also
- Parameters:
aspect_ratio_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SideLengthRange& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class FilterScript : public visionflow::param::ISchemable#
FilterScript Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Filter function.
Enable this option to filter regions with customized python function.
See also
- Returns:
bool Enable Filter function
-
FilterScript &set_enable(bool enable)#
Set Enable Filter function with bool value.
Enable this option to filter regions with customized python function.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FilterScript& the reference of this object.
-
const std::string &get_filter_script() const#
Get Filter Script.
The python filter script.
See also
- Returns:
const std::string & Filter Script
-
FilterScript &set_filter_script(const std::string &filter_script)#
Set Filter Script with std::string value.
The python filter script.
See also
- Parameters:
filter_script – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FilterScript& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class SingleClassPolygonsFilterParameters : public visionflow::param::ISchemable#
SingleClassPolygonsFilterParameters Parameter class generated by jinja2 automatically.
Common Regions filter parameters to filter regions.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable this polygon filter parameter group.
See also
- Returns:
bool Enable
-
SingleClassPolygonsFilterParameters &set_enable(bool enable)#
Set Enable with bool value.
Enable this polygon filter parameter group.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
double get_score_threshold() const#
Get Score Threshold.
Only retains regions with score greater than this threshold.
See also
- Returns:
double Score Threshold
-
SingleClassPolygonsFilterParameters &set_score_threshold(double score_threshold)#
Set Score Threshold with double value.
Only retains regions with score greater than this threshold.
See also
- Parameters:
score_threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
const std::vector<int> &get_area_range() const#
Get Area Range.
The area range of the regions you want to keep
See also
- Returns:
const std::vector<int> & Area Range
-
SingleClassPolygonsFilterParameters &set_area_range(const std::vector<int> &area_range)#
Set Area Range with std::vector<int> value.
The area range of the regions you want to keep
See also
- Parameters:
area_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
bool area_range_contains(int value) const#
Check if the Area Range contains the value.
- Returns:
bool true if the Area Range contains the value, otherwise false.
-
int get_area_range_left() const#
Get left point value of Area Range.
See also
- Returns:
const std::vector<int> & left point value of Area Range
-
int get_area_range_right() const#
Get the right point value of Area Range.
See also
- Returns:
const std::vector<int> & the right point value of Area Range
-
SingleClassPolygonsFilterParameters &set_area_range_left(int area_range_left)#
Set left point value of Area Range with std::vector<int> value.
The area range of the regions you want to keep
See also
- Parameters:
area_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
SingleClassPolygonsFilterParameters &set_area_range_right(int area_range_right)#
Set the right point value of Area Range with std::vector<int> value.
The area range of the regions you want to keep
See also
- Parameters:
area_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
const AxialSideLengthRange &get_axial_side_filter() const#
Get Axial-Side-Length Filter.
Filter regions with X/Y-axis side length.
See also
- Returns:
const AxialSideLengthRange & Axial-Side-Length Filter
-
SingleClassPolygonsFilterParameters &set_axial_side_filter(const AxialSideLengthRange &axial_side_filter)#
Set Axial-Side-Length Filter with AxialSideLengthRange value.
Filter regions with X/Y-axis side length.
See also
- Parameters:
axial_side_filter – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
AxialSideLengthRange &get_axial_side_filter()#
Get mutable reference of Axial-Side-Length Filter.
Filter regions with X/Y-axis side length.
- Returns:
SingleClassPolygonsFilterParameters& the mutable reference of the group.
-
const SideLengthRange &get_side_filter() const#
Get Side-Length Filter.
Filter regions with Side length
See also
- Returns:
const SideLengthRange & Side-Length Filter
-
SingleClassPolygonsFilterParameters &set_side_filter(const SideLengthRange &side_filter)#
Set Side-Length Filter with SideLengthRange value.
Filter regions with Side length
See also
- Parameters:
side_filter – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SingleClassPolygonsFilterParameters& the reference of this object.
-
SideLengthRange &get_side_filter()#
Get mutable reference of Side-Length Filter.
Filter regions with Side length
- Returns:
SingleClassPolygonsFilterParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class PolygonsFilterParameters : public visionflow::param::SchemableParameter#
PolygonsFilterParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::map<std::string, SingleClassPolygonsFilterParameters> &get_class_thresholds() const#
Get Class Polygon Thresholds.
Polygon thresholds (area, side-length,etc.) named with the label classes according to which to filter the polygons.
See also
- Returns:
const std::map<std::string, SingleClassPolygonsFilterParameters> & Class Polygon Thresholds
-
PolygonsFilterParameters &set_class_thresholds(const std::map<std::string, SingleClassPolygonsFilterParameters> &class_thresholds)#
Set Class Polygon Thresholds with std::map<std::string, SingleClassPolygonsFilterParameters> value.
Polygon thresholds (area, side-length,etc.) named with the label classes according to which to filter the polygons.
See also
- Parameters:
class_thresholds – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PolygonsFilterParameters& the reference of this object.
-
const SingleClassPolygonsFilterParameters &get_class_thresholds(const std::string &key) const#
Get value in Class Polygon Thresholds with key.
Warning
The key must be exist in Class Polygon Thresholds. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, SingleClassPolygonsFilterParameters> & value in Class Polygon Thresholds at key.
-
PolygonsFilterParameters &set_class_thresholds(const std::string &key, const SingleClassPolygonsFilterParameters &value)#
Set value in Class Polygon Thresholds with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PolygonsFilterParameters& the reference of this object.
-
bool class_thresholds_contains(const std::string &key) const#
Check if the key is exist in Class Polygon Thresholds.
- Returns:
bool true if the key is exist in Class Polygon Thresholds, otherwise false.
-
size_t get_class_thresholds_size() const#
Get the size of Class Polygon Thresholds.
- Returns:
size_t the size of Class Polygon Thresholds
-
SingleClassPolygonsFilterParameters &get_class_thresholds(const std::string &key)#
Get mutable reference of value in Class Polygon Thresholds with key. A new key and default value will be created if the key does not exist.
- Returns:
SingleClassPolygonsFilterParameters& the mutable reference of value in Class Polygon Thresholds at key.
-
const SingleClassPolygonsFilterParameters &get_additional_threshold() const#
Get Additional Probability Thresholds.
Additional polygon threshold for other label classes not in “Class Polygon Thresholds”. The filter operator will filter all feature maps whose label class is not in “Class Polygon Thresholds” with the additional threshold.
See also
- Returns:
const SingleClassPolygonsFilterParameters & Additional Probability Thresholds
-
PolygonsFilterParameters &set_additional_threshold(const SingleClassPolygonsFilterParameters &additional_threshold)#
Set Additional Probability Thresholds with SingleClassPolygonsFilterParameters value.
Additional polygon threshold for other label classes not in “Class Polygon Thresholds”. The filter operator will filter all feature maps whose label class is not in “Class Polygon Thresholds” with the additional threshold.
See also
- Parameters:
additional_threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PolygonsFilterParameters& the reference of this object.
-
SingleClassPolygonsFilterParameters &get_additional_threshold()#
Get mutable reference of Additional Probability Thresholds.
Additional polygon threshold for other label classes not in “Class Polygon Thresholds”. The filter operator will filter all feature maps whose label class is not in “Class Polygon Thresholds” with the additional threshold.
- Returns:
PolygonsFilterParameters& the mutable reference of the group.
-
const FilterScript &get_script_filter() const#
Get Custom python filter script.
Filter regions with python script.
See also
- Returns:
const FilterScript & Custom python filter script
-
PolygonsFilterParameters &set_script_filter(const FilterScript &script_filter)#
Set Custom python filter script with FilterScript value.
Filter regions with python script.
See also
- Parameters:
script_filter – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PolygonsFilterParameters& the reference of this object.
-
FilterScript &get_script_filter()#
Get mutable reference of Custom python filter script.
Filter regions with python script.
- Returns:
PolygonsFilterParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class FeatureMapFilterParameters : public visionflow::param::SchemableParameter#
FeatureMapFilterParameters Parameter class generated by jinja2 automatically.
Parameters to config the feature map filter.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::map<std::string, double> &get_class_thresholds() const#
Get Class Probability Thresholds.
Thresholds named with the label classes according to which to binarize the feature map.
See also
- Returns:
const std::map<std::string, double> & Class Probability Thresholds
-
FeatureMapFilterParameters &set_class_thresholds(const std::map<std::string, double> &class_thresholds)#
Set Class Probability Thresholds with std::map<std::string, double> value.
Thresholds named with the label classes according to which to binarize the feature map.
See also
- Parameters:
class_thresholds – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FeatureMapFilterParameters& the reference of this object.
-
double get_class_thresholds(const std::string &key) const#
Get value in Class Probability Thresholds with key.
Warning
The key must be exist in Class Probability Thresholds. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, double> & value in Class Probability Thresholds at key.
-
FeatureMapFilterParameters &set_class_thresholds(const std::string &key, double value)#
Set value in Class Probability Thresholds with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FeatureMapFilterParameters& the reference of this object.
-
bool class_thresholds_contains(const std::string &key) const#
Check if the key is exist in Class Probability Thresholds.
- Returns:
bool true if the key is exist in Class Probability Thresholds, otherwise false.
-
size_t get_class_thresholds_size() const#
Get the size of Class Probability Thresholds.
- Returns:
size_t the size of Class Probability Thresholds
-
double get_additional_threshold() const#
Get Additional Probability Thresholds.
Additional threshold for other label classes not in “Class Probability Thresholds”. The visionflow::opers::FeatureMapFilter will filter all feature maps whose label class is not in “Class Probability Thresholds” with the additional threshold.
See also
- Returns:
double Additional Probability Thresholds
-
FeatureMapFilterParameters &set_additional_threshold(double additional_threshold)#
Set Additional Probability Thresholds with double value.
Additional threshold for other label classes not in “Class Probability Thresholds”. The visionflow::opers::FeatureMapFilter will filter all feature maps whose label class is not in “Class Probability Thresholds” with the additional threshold.
See also
- Parameters:
additional_threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FeatureMapFilterParameters& the reference of this object.
-
int get_dilate_pixels() const#
Get Dilate Pixels.
Dilate the filtered regions by the specified pixels. This option can be used to merge closely scattered defects together.
See also
- Returns:
int Dilate Pixels
-
FeatureMapFilterParameters &set_dilate_pixels(int dilate_pixels)#
Set Dilate Pixels with int value.
Dilate the filtered regions by the specified pixels. This option can be used to merge closely scattered defects together.
See also
- Parameters:
dilate_pixels – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FeatureMapFilterParameters& the reference of this object.
-
bool get_enable_polygon_score() const#
Get Calculate Defect Region Score.
Provide every defect region score(0~1), bigger value means the region has more possibility to be a defect
See also
- Returns:
bool Calculate Defect Region Score
-
FeatureMapFilterParameters &set_enable_polygon_score(bool enable_polygon_score)#
Set Calculate Defect Region Score with bool value.
Provide every defect region score(0~1), bigger value means the region has more possibility to be a defect
See also
- Parameters:
enable_polygon_score – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
FeatureMapFilterParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Training logs#
-
class LossCurve : public visionflow::param::ISchemable#
LossCurve Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::vector<double> &get_values() const#
Get values.
A loss curve
See also
- Returns:
const std::vector<double> & values
-
LossCurve &set_values(const std::vector<double> &values)#
Set values with std::vector<double> value.
A loss curve
See also
- Parameters:
values – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LossCurve& the reference of this object.
-
double get_values(size_t index) const#
Get value in values with index.
Warning
The index must be less than get_values_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
double value in values at index.
-
size_t get_values_size() const#
Get the size of values.
- Returns:
size_t the size of values
-
virtual const std::string &schema_str() const override#
-
class TrainingLog : public visionflow::param::SchemableParameter#
TrainingLog Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int64_t get_start_at() const#
Get Start Time.
The training task start time.
See also
- Returns:
int64_t Start Time
-
TrainingLog &set_start_at(int64_t start_at)#
Set Start Time with int64_t value.
The training task start time.
See also
- Parameters:
start_at – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingLog& the reference of this object.
-
int64_t get_end_at() const#
Get End Time.
The training task finish time.
See also
- Returns:
int64_t End Time
-
TrainingLog &set_end_at(int64_t end_at)#
Set End Time with int64_t value.
The training task finish time.
See also
- Parameters:
end_at – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingLog& the reference of this object.
-
const std::map<std::string, LossCurve> &get_loss() const#
Get Loss.
Loss curves with name
See also
- Returns:
const std::map<std::string, LossCurve> & Loss
-
TrainingLog &set_loss(const std::map<std::string, LossCurve> &loss)#
Set Loss with std::map<std::string, LossCurve> value.
Loss curves with name
See also
- Parameters:
loss – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingLog& the reference of this object.
-
const LossCurve &get_loss(const std::string &key) const#
Get value in Loss with key.
Warning
The key must be exist in Loss. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, LossCurve> & value in Loss at key.
-
TrainingLog &set_loss(const std::string &key, const LossCurve &value)#
Set value in Loss with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingLog& the reference of this object.
-
bool loss_contains(const std::string &key) const#
Check if the key is exist in Loss.
- Returns:
bool true if the key is exist in Loss, otherwise false.
-
size_t get_loss_size() const#
Get the size of Loss.
- Returns:
size_t the size of Loss
-
virtual const std::string &schema_str() const override#
Training Mode#
-
enum visionflow::param::TrainingMode#
Values:
-
enumerator kNormalTrain = 0#
-
enumerator kIncrementalTrain = 1#
-
enumerator kNormalTrain = 0#
Ungrouped Parameters#
-
class InferenceBatchSize : public visionflow::param::SchemableParameter#
InferenceBatchSize Parameter class generated by jinja2 automatically.
Inference BatchSize, Currently only contains batch size. It may need to be refactored in the future.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_batch_size() const#
Get Inference Batch Size.
The batch size for inference. You can set it to the number of pictures you wish to infer at the same time. Usually the default value of 1 is sufficient. Note that if you set larger batches without giving enough images per inference, it may actually slow down inference.
See also
- Returns:
int Inference Batch Size
-
InferenceBatchSize &set_batch_size(int batch_size)#
Set Inference Batch Size with int value.
The batch size for inference. You can set it to the number of pictures you wish to infer at the same time. Usually the default value of 1 is sufficient. Note that if you set larger batches without giving enough images per inference, it may actually slow down inference.
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
InferenceBatchSize& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class TRTCalibParameters : public visionflow::param::SchemableParameter#
TRTCalibParameters Parameter class generated by jinja2 automatically.
TensorRT Int8 Calibrator Parameters
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_place_holder() const#
Get PlaceHolder.
See also
- Returns:
bool PlaceHolder
-
TRTCalibParameters &set_place_holder(bool place_holder)#
Set PlaceHolder with bool value.
See also
- Parameters:
place_holder – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TRTCalibParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Template Match Parameters#
-
enum visionflow::param::TemplateMode#
Values:
-
enumerator kValueByPixel = 0#
-
enumerator kValueByRatio = 1#
-
enumerator kValueByPixel = 0#
-
class KeyPointNode : public visionflow::param::ISchemable#
KeyPointNode Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_x() const#
Get X-Value.
X-direction coordinate value of the center of the key point. When the template models set to kValueByPixel, X-Value should be set using pixel value. When the template models set to kValueByRatio, X-Value should be set using ratio value. When the Area Value Type is modified, X-Value needs to be modified.
See also
- Returns:
double X-Value
-
KeyPointNode &set_x(double x)#
Set X-Value with double value.
X-direction coordinate value of the center of the key point. When the template models set to kValueByPixel, X-Value should be set using pixel value. When the template models set to kValueByRatio, X-Value should be set using ratio value. When the Area Value Type is modified, X-Value needs to be modified.
See also
- Parameters:
x – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
KeyPointNode& the reference of this object.
-
double get_y() const#
Get Y-Value.
Y-direction coordinate value of the center of the key point. When the template models set to kValueByPixel, Y-Value should be set using pixel value. When the template models set to kValueByRatio, Y-Value should be set using ratio value. When the Area Value Type is modified, Y-Value needs to be modified.
See also
- Returns:
double Y-Value
-
KeyPointNode &set_y(double y)#
Set Y-Value with double value.
Y-direction coordinate value of the center of the key point. When the template models set to kValueByPixel, Y-Value should be set using pixel value. When the template models set to kValueByRatio, Y-Value should be set using ratio value. When the Area Value Type is modified, Y-Value needs to be modified.
See also
- Parameters:
y – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
KeyPointNode& the reference of this object.
-
const std::string &get_name() const#
Get Name.
The name that can be matched by the node
See also
- Returns:
const std::string & Name
-
KeyPointNode &set_name(const std::string &name)#
Set Name with std::string value.
The name that can be matched by the node
See also
- Parameters:
name – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
KeyPointNode& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class MultiNameKeyPointNode : public visionflow::param::ISchemable#
MultiNameKeyPointNode Parameter class generated by jinja2 automatically.
Define the position of the node and a set of names that can be matched by the node.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_x() const#
Get X-Value.
X-direction coordinate value of the key point, specified either in absolute pixel or relative ratio, depending on the chosen TemplateMode. If using kValueByRatio mode, the value is relative to the view width.
See also
- Returns:
double X-Value
-
MultiNameKeyPointNode &set_x(double x)#
Set X-Value with double value.
X-direction coordinate value of the key point, specified either in absolute pixel or relative ratio, depending on the chosen TemplateMode. If using kValueByRatio mode, the value is relative to the view width.
See also
- Parameters:
x – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
MultiNameKeyPointNode& the reference of this object.
-
double get_y() const#
Get Y-Value.
Y-direction coordinate value of the key point, specified either in absolute pixel or relative ratio, depending on the chosen TemplateMode. If using kValueByRatio mode, the value is relative to the view height.
See also
- Returns:
double Y-Value
-
MultiNameKeyPointNode &set_y(double y)#
Set Y-Value with double value.
Y-direction coordinate value of the key point, specified either in absolute pixel or relative ratio, depending on the chosen TemplateMode. If using kValueByRatio mode, the value is relative to the view height.
See also
- Parameters:
y – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
MultiNameKeyPointNode& the reference of this object.
-
const std::vector<std::string> &get_names() const#
Get Names.
The names that can be matched by the node
See also
- Returns:
const std::vector<std::string> & Names
-
MultiNameKeyPointNode &set_names(const std::vector<std::string> &names)#
Set Names with std::vector<std::string> value.
The names that can be matched by the node
See also
- Parameters:
names – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
MultiNameKeyPointNode& the reference of this object.
-
const std::string &get_names(size_t index) const#
Get value in Names with index.
Warning
The index must be less than get_names_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::string & value in Names at index.
-
size_t get_names_size() const#
Get the size of Names.
- Returns:
size_t the size of Names
-
virtual const std::string &schema_str() const override#
OCR Parameters#
-
class RegularExpression : public visionflow::param::ISchemable#
RegularExpression Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Regular Expression.
Enable regular expression.
See also
- Returns:
bool Enable Regular Expression
-
RegularExpression &set_enable(bool enable)#
Set Enable Regular Expression with bool value.
Enable regular expression.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
RegularExpression& the reference of this object.
-
const std::string &get_pattern() const#
Get Pattern.
Regular expression pattern.
See also
- Returns:
const std::string & Pattern
-
RegularExpression &set_pattern(const std::string &pattern)#
Set Pattern with std::string value.
Regular expression pattern.
See also
- Parameters:
pattern – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
RegularExpression& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class OCRNodeTemplate : public visionflow::param::ISchemable#
OCRNodeTemplate Parameter class generated by jinja2 automatically.
Node template is used to match strings of any shape.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Node Template Matching.
Enable node template matching.
See also
- Returns:
bool Enable Node Template Matching
-
OCRNodeTemplate &set_enable(bool enable)#
Set Enable Node Template Matching with bool value.
Enable node template matching.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
const TemplateMode &get_template_mode() const#
Get Template Mode.
Specifying the unit of measurement for the position and max_distance values of the key point node. Choose between kValueByPixel for using pixel values, or kValueByRatio for using relative ratios.
See also
- Returns:
const TemplateMode & Template Mode
-
OCRNodeTemplate &set_template_mode(const TemplateMode &template_mode)#
Set Template Mode with TemplateMode value.
Specifying the unit of measurement for the position and max_distance values of the key point node. Choose between kValueByPixel for using pixel values, or kValueByRatio for using relative ratios.
See also
- Parameters:
template_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
int get_max_matches() const#
Get Maximum Matches.
Maximum number of templates to remain within view. Results are sorted based on the match distance in ascending order, and only the top ‘max_matches’ results are retained. All results are provided by default.
See also
- Returns:
int Maximum Matches
-
OCRNodeTemplate &set_max_matches(int max_matches)#
Set Maximum Matches with int value.
Maximum number of templates to remain within view. Results are sorted based on the match distance in ascending order, and only the top ‘max_matches’ results are retained. All results are provided by default.
See also
- Parameters:
max_matches – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
const std::vector<MultiNameKeyPointNode> &get_points() const#
Get Keypoints.
The key points of the template.
See also
- Returns:
const std::vector<MultiNameKeyPointNode> & Keypoints
-
OCRNodeTemplate &set_points(const std::vector<MultiNameKeyPointNode> &points)#
Set Keypoints with std::vector<MultiNameKeyPointNode> value.
The key points of the template.
See also
- Parameters:
points – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
const MultiNameKeyPointNode &get_points(size_t index) const#
Get value in Keypoints with index.
Warning
The index must be less than get_points_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const MultiNameKeyPointNode & value in Keypoints at index.
-
size_t get_points_size() const#
Get the size of Keypoints.
- Returns:
size_t the size of Keypoints
-
MultiNameKeyPointNode &get_points(size_t index)#
Get mutable reference of value in Keypoints with index.
Warning
The index must be less than get_points_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
MultiNameKeyPointNode& the mutable reference of value in Keypoints at index.
-
double get_max_distance() const#
Get Max Distance.
The maximum allowed distance between the template keypoints and the keypoints to be matched. Results with a distance greater than this value will be filtered out. The value can be either in absolute pixel or relative to the view height, depending on the template_mode.
See also
- Returns:
double Max Distance
-
OCRNodeTemplate &set_max_distance(double max_distance)#
Set Max Distance with double value.
The maximum allowed distance between the template keypoints and the keypoints to be matched. Results with a distance greater than this value will be filtered out. The value can be either in absolute pixel or relative to the view height, depending on the template_mode.
See also
- Parameters:
max_distance – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
bool get_is_scalable() const#
Get Target Scalable.
Enable this option if the size of target to be matched is not fixed. And you should set the target scale range.
See also
- Returns:
bool Target Scalable
-
OCRNodeTemplate &set_is_scalable(bool is_scalable)#
Set Target Scalable with bool value.
Enable this option if the size of target to be matched is not fixed. And you should set the target scale range.
See also
- Parameters:
is_scalable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
const std::vector<double> &get_scale_range() const#
Get Scale Range.
The target scale range.
See also
- Returns:
const std::vector<double> & Scale Range
-
OCRNodeTemplate &set_scale_range(const std::vector<double> &scale_range)#
Set Scale Range with std::vector<double> value.
The target scale range.
See also
- Parameters:
scale_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
bool scale_range_contains(double value) const#
Check if the Scale Range contains the value.
- Returns:
bool true if the Scale Range contains the value, otherwise false.
-
double get_scale_range_left() const#
Get left point value of Scale Range.
See also
- Returns:
const std::vector<double> & left point value of Scale Range
-
double get_scale_range_right() const#
Get the right point value of Scale Range.
See also
- Returns:
const std::vector<double> & the right point value of Scale Range
-
OCRNodeTemplate &set_scale_range_left(double scale_range_left)#
Set left point value of Scale Range with std::vector<double> value.
The target scale range.
See also
- Parameters:
scale_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
OCRNodeTemplate &set_scale_range_right(double scale_range_right)#
Set the right point value of Scale Range with std::vector<double> value.
The target scale range.
See also
- Parameters:
scale_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
bool get_is_rotatable() const#
Get Target Rotatable.
Enable this option if the angle of target to be matched is not fixed, And you should set the target rotate angle range.
See also
- Returns:
bool Target Rotatable
-
OCRNodeTemplate &set_is_rotatable(bool is_rotatable)#
Set Target Rotatable with bool value.
Enable this option if the angle of target to be matched is not fixed, And you should set the target rotate angle range.
See also
- Parameters:
is_rotatable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
const std::vector<int> &get_rotate_range() const#
Get Rotate Range (Degree).
The target rotate range.
See also
- Returns:
const std::vector<int> & Rotate Range (Degree)
-
OCRNodeTemplate &set_rotate_range(const std::vector<int> &rotate_range)#
Set Rotate Range (Degree) with std::vector<int> value.
The target rotate range.
See also
- Parameters:
rotate_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
bool rotate_range_contains(int value) const#
Check if the Rotate Range (Degree) contains the value.
- Returns:
bool true if the Rotate Range (Degree) contains the value, otherwise false.
-
int get_rotate_range_left() const#
Get left point value of Rotate Range (Degree).
See also
- Returns:
const std::vector<int> & left point value of Rotate Range (Degree)
-
int get_rotate_range_right() const#
Get the right point value of Rotate Range (Degree).
See also
- Returns:
const std::vector<int> & the right point value of Rotate Range (Degree)
-
OCRNodeTemplate &set_rotate_range_left(int rotate_range_left)#
Set left point value of Rotate Range (Degree) with std::vector<int> value.
The target rotate range.
See also
- Parameters:
rotate_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
OCRNodeTemplate &set_rotate_range_right(int rotate_range_right)#
Set the right point value of Rotate Range (Degree) with std::vector<int> value.
The target rotate range.
See also
- Parameters:
rotate_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRNodeTemplate& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class OCRStringTemplate : public visionflow::param::ISchemable#
OCRStringTemplate Parameter class generated by jinja2 automatically.
String template is used to control how to match characters into strings.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable String Template Matching.
Enable string template matching.
See also
- Returns:
bool Enable String Template Matching
-
OCRStringTemplate &set_enable(bool enable)#
Set Enable String Template Matching with bool value.
Enable string template matching.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
int get_max_matches() const#
Get Maximum Matches.
Maximum number of templates to remain within view. Results are sorted based on the deviation of characters from the string, and only the top ‘max_matches’ results are retained. All results are provided by default.
See also
- Returns:
int Maximum Matches
-
OCRStringTemplate &set_max_matches(int max_matches)#
Set Maximum Matches with int value.
Maximum number of templates to remain within view. Results are sorted based on the deviation of characters from the string, and only the top ‘max_matches’ results are retained. All results are provided by default.
See also
- Parameters:
max_matches – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
int get_min_length() const#
Get Minimum String Length.
String shorter than the minimum length will be ignored.
See also
- Returns:
int Minimum String Length
-
OCRStringTemplate &set_min_length(int min_length)#
Set Minimum String Length with int value.
String shorter than the minimum length will be ignored.
See also
- Parameters:
min_length – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
double get_max_char_interval() const#
Get Maximum Character Interval.
The maximum interval between characters in a string, Two characters with interval longer than this threshold will be matched into two different strings.
See also
- Returns:
double Maximum Character Interval
-
OCRStringTemplate &set_max_char_interval(double max_char_interval)#
Set Maximum Character Interval with double value.
The maximum interval between characters in a string, Two characters with interval longer than this threshold will be matched into two different strings.
See also
- Parameters:
max_char_interval – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
int get_main_direction() const#
Get String Main Direction.
Direction of strings based on statistics. (It is specified that the positive x-axis direction is 0 degrees, positive values representing the direction towards the positive y-axis, negative values indicating the direction towards the negative y-axis.)
See also
- Returns:
int String Main Direction
-
OCRStringTemplate &set_main_direction(int main_direction)#
Set String Main Direction with int value.
Direction of strings based on statistics. (It is specified that the positive x-axis direction is 0 degrees, positive values representing the direction towards the positive y-axis, negative values indicating the direction towards the negative y-axis.)
See also
- Parameters:
main_direction – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
int get_angle_range() const#
Get Rotate Angle Range.
The rotate angle range of the string, which means that the string can be rotated slightly within an angular range centered on the main direction.
See also
- Returns:
int Rotate Angle Range
-
OCRStringTemplate &set_angle_range(int angle_range)#
Set Rotate Angle Range with int value.
The rotate angle range of the string, which means that the string can be rotated slightly within an angular range centered on the main direction.
See also
- Parameters:
angle_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
const RegularExpression &get_regular_expression() const#
Get Regular Expression.
Regular expression parameter.
See also
- Returns:
const RegularExpression & Regular Expression
-
OCRStringTemplate &set_regular_expression(const RegularExpression ®ular_expression)#
Set Regular Expression with RegularExpression value.
Regular expression parameter.
See also
- Parameters:
regular_expression – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRStringTemplate& the reference of this object.
-
RegularExpression &get_regular_expression()#
Get mutable reference of Regular Expression.
Regular expression parameter.
- Returns:
OCRStringTemplate& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class OCRFilterParameters : public visionflow::param::SchemableParameter#
OCRFilterParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_threshold() const#
Get Confidence Threshold.
Greater than this threshold will be determined as a target.
See also
- Returns:
double Confidence Threshold
-
OCRFilterParameters &set_threshold(double threshold)#
Set Confidence Threshold with double value.
Greater than this threshold will be determined as a target.
See also
- Parameters:
threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRFilterParameters& the reference of this object.
-
double get_density() const#
Get Search Density.
Filter out duplicate results using NMS. A higher value will retain fewer results.
See also
- Returns:
double Search Density
-
OCRFilterParameters &set_density(double density)#
Set Search Density with double value.
Filter out duplicate results using NMS. A higher value will retain fewer results.
See also
- Parameters:
density – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRFilterParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class OCRInferParameters : public visionflow::param::SchemableParameter#
OCRInferParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Customize Character Size.
Enable this option to customize target character size if the character in inference image is not match with the size of training data.
See also
- Returns:
bool Customize Character Size
-
OCRInferParameters &set_enable(bool enable)#
Set Customize Character Size with bool value.
Enable this option to customize target character size if the character in inference image is not match with the size of training data.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRInferParameters& the reference of this object.
-
double get_target_feat_width() const#
Get Target Character Width.
The target character width in inference data.
See also
- Returns:
double Target Character Width
-
OCRInferParameters &set_target_feat_width(double target_feat_width)#
Set Target Character Width with double value.
The target character width in inference data.
See also
- Parameters:
target_feat_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRInferParameters& the reference of this object.
-
double get_target_feat_height() const#
Get Target Character Height.
The target character height in inference data.
See also
- Returns:
double Target Character Height
-
OCRInferParameters &set_target_feat_height(double target_feat_height)#
Set Target Character Height with double value.
The target character height in inference data.
See also
- Parameters:
target_feat_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRInferParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class OCRUniversalModelParameters : public visionflow::param::SchemableParameter#
OCRUniversalModelParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_target_feat_width() const#
Get Target Character Width.
The target character width in inference data.
See also
- Returns:
double Target Character Width
-
OCRUniversalModelParameters &set_target_feat_width(double target_feat_width)#
Set Target Character Width with double value.
The target character width in inference data.
See also
- Parameters:
target_feat_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRUniversalModelParameters& the reference of this object.
-
double get_target_feat_height() const#
Get Target Character Height.
The target character height in inference data.
See also
- Returns:
double Target Character Height
-
OCRUniversalModelParameters &set_target_feat_height(double target_feat_height)#
Set Target Character Height with double value.
The target character height in inference data.
See also
- Parameters:
target_feat_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRUniversalModelParameters& the reference of this object.
-
const OCRAnnulusParameters &get_annulus_recognition() const#
Get Annulus Character Recognition.
Annulus Character Recognition Parameters
See also
- Returns:
const OCRAnnulusParameters & Annulus Character Recognition
-
OCRUniversalModelParameters &set_annulus_recognition(const OCRAnnulusParameters &annulus_recognition)#
Set Annulus Character Recognition with OCRAnnulusParameters value.
Annulus Character Recognition Parameters
See also
- Parameters:
annulus_recognition – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRUniversalModelParameters& the reference of this object.
-
OCRAnnulusParameters &get_annulus_recognition()#
Get mutable reference of Annulus Character Recognition.
Annulus Character Recognition Parameters
- Returns:
OCRUniversalModelParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class OCRTemplates : public visionflow::param::SchemableParameter#
OCRTemplates Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::map<std::string, OCRStringTemplate> &get_string_templates() const#
Get String Templates.
String templates.
See also
- Returns:
const std::map<std::string, OCRStringTemplate> & String Templates
-
OCRTemplates &set_string_templates(const std::map<std::string, OCRStringTemplate> &string_templates)#
Set String Templates with std::map<std::string, OCRStringTemplate> value.
String templates.
See also
- Parameters:
string_templates – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTemplates& the reference of this object.
-
const OCRStringTemplate &get_string_templates(const std::string &key) const#
Get value in String Templates with key.
Warning
The key must be exist in String Templates. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, OCRStringTemplate> & value in String Templates at key.
-
OCRTemplates &set_string_templates(const std::string &key, const OCRStringTemplate &value)#
Set value in String Templates with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTemplates& the reference of this object.
-
bool string_templates_contains(const std::string &key) const#
Check if the key is exist in String Templates.
- Returns:
bool true if the key is exist in String Templates, otherwise false.
-
size_t get_string_templates_size() const#
Get the size of String Templates.
- Returns:
size_t the size of String Templates
-
OCRStringTemplate &get_string_templates(const std::string &key)#
Get mutable reference of value in String Templates with key. A new key and default value will be created if the key does not exist.
- Returns:
OCRStringTemplate& the mutable reference of value in String Templates at key.
-
const std::map<std::string, OCRNodeTemplate> &get_node_templates() const#
Get Node Templates.
Node templates.
See also
- Returns:
const std::map<std::string, OCRNodeTemplate> & Node Templates
-
OCRTemplates &set_node_templates(const std::map<std::string, OCRNodeTemplate> &node_templates)#
Set Node Templates with std::map<std::string, OCRNodeTemplate> value.
Node templates.
See also
- Parameters:
node_templates – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTemplates& the reference of this object.
-
const OCRNodeTemplate &get_node_templates(const std::string &key) const#
Get value in Node Templates with key.
Warning
The key must be exist in Node Templates. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, OCRNodeTemplate> & value in Node Templates at key.
-
OCRTemplates &set_node_templates(const std::string &key, const OCRNodeTemplate &value)#
Set value in Node Templates with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTemplates& the reference of this object.
-
bool node_templates_contains(const std::string &key) const#
Check if the key is exist in Node Templates.
- Returns:
bool true if the key is exist in Node Templates, otherwise false.
-
size_t get_node_templates_size() const#
Get the size of Node Templates.
- Returns:
size_t the size of Node Templates
-
OCRNodeTemplate &get_node_templates(const std::string &key)#
Get mutable reference of value in Node Templates with key. A new key and default value will be created if the key does not exist.
- Returns:
OCRNodeTemplate& the mutable reference of value in Node Templates at key.
-
virtual const std::string &schema_str() const override#
-
class OCRAnnulusParameters : public visionflow::param::ISchemable#
OCRAnnulusParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Annulus Recognition.
Enable this option to recognize characters arranged in a circular pattern.
See also
- Returns:
bool Enable Annulus Recognition
-
OCRAnnulusParameters &set_enable(bool enable)#
Set Enable Annulus Recognition with bool value.
Enable this option to recognize characters arranged in a circular pattern.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_x() const#
Get Center X.
The x-coordinate of the center of the annulus, set according to the percentage of the view height.
See also
- Returns:
double Center X
-
OCRAnnulusParameters &set_x(double x)#
Set Center X with double value.
The x-coordinate of the center of the annulus, set according to the percentage of the view height.
See also
- Parameters:
x – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_y() const#
Get Center Y.
The y-coordinate of the center of the annulus, set according to the percentage of the view height.
See also
- Returns:
double Center Y
-
OCRAnnulusParameters &set_y(double y)#
Set Center Y with double value.
The y-coordinate of the center of the annulus, set according to the percentage of the view height.
See also
- Parameters:
y – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_inner_radius() const#
Get Inner Radius.
The inner radius of the annulus, set according to the percentage of the view height.
See also
- Returns:
double Inner Radius
-
OCRAnnulusParameters &set_inner_radius(double inner_radius)#
Set Inner Radius with double value.
The inner radius of the annulus, set according to the percentage of the view height.
See also
- Parameters:
inner_radius – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_outer_radius() const#
Get Outer Radius.
The outer radius of the annulus, set according to the percentage of the view height.
See also
- Returns:
double Outer Radius
-
OCRAnnulusParameters &set_outer_radius(double outer_radius)#
Set Outer Radius with double value.
The outer radius of the annulus, set according to the percentage of the view height.
See also
- Parameters:
outer_radius – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_start_angle() const#
Get Start Angle.
It is specified that the positive x-axis direction is 0 degrees, positive values representing the direction towards the negative y-axis, negative values indicating the direction towards the positive y-axis.
See also
- Returns:
double Start Angle
-
OCRAnnulusParameters &set_start_angle(double start_angle)#
Set Start Angle with double value.
It is specified that the positive x-axis direction is 0 degrees, positive values representing the direction towards the negative y-axis, negative values indicating the direction towards the positive y-axis.
See also
- Parameters:
start_angle – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
double get_angle_range() const#
Get Angle Range.
The range of angle in which the annulus is unwrapped, if the angle is greater than 360 degrees or less than -360 degrees, the excess part will be unwrapped repeatedly. Positive values representing the direction towards the negative y-axis, negative values indicating the direction towards the positive y-axis.
See also
- Returns:
double Angle Range
-
OCRAnnulusParameters &set_angle_range(double angle_range)#
Set Angle Range with double value.
The range of angle in which the annulus is unwrapped, if the angle is greater than 360 degrees or less than -360 degrees, the excess part will be unwrapped repeatedly. Positive values representing the direction towards the negative y-axis, negative values indicating the direction towards the positive y-axis.
See also
- Parameters:
angle_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRAnnulusParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class OCRTrainingParameters : public visionflow::param::SchemableParameter#
OCRTrainingParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epochs.
Each iteration of the training images participates in a training session.
See also
- Returns:
int Epochs
-
OCRTrainingParameters &set_epoch(int epoch)#
Set Epochs with int value.
Each iteration of the training images participates in a training session.
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16.
See also
- Returns:
int Training Batch Size
-
OCRTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16.
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
const TrainingMode &get_training_mode() const#
Get Training Mode.
kNormalTrain stands for the normal training mode, in which the model is trained from scratch, ignoring any pre-existing training results. kIncrementalTrain stands for the incremental training mode, where the model continues training on top of the pre-existing training results, saving time and making full use of the existing data. By default, the incremental training mode is used.
See also
- Returns:
const TrainingMode & Training Mode
-
OCRTrainingParameters &set_training_mode(const TrainingMode &training_mode)#
Set Training Mode with TrainingMode value.
kNormalTrain stands for the normal training mode, in which the model is trained from scratch, ignoring any pre-existing training results. kIncrementalTrain stands for the incremental training mode, where the model continues training on top of the pre-existing training results, saving time and making full use of the existing data. By default, the incremental training mode is used.
See also
- Parameters:
training_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
double get_sampling_ratio() const#
Get Sampling Ratio.
The proportion of new data in incremental training. This parameter is only applicable when the training mode is set to ‘kIncrementalTrain’.
See also
- Returns:
double Sampling Ratio
-
OCRTrainingParameters &set_sampling_ratio(double sampling_ratio)#
Set Sampling Ratio with double value.
The proportion of new data in incremental training. This parameter is only applicable when the training mode is set to ‘kIncrementalTrain’.
See also
- Parameters:
sampling_ratio – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
bool get_only_check() const#
Get Only Check.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Returns:
bool Only Check
-
OCRTrainingParameters &set_only_check(bool only_check)#
Set Only Check with bool value.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Parameters:
only_check – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
double get_step_ratio() const#
Get Learning Rate Update Step Ratio.
The ratio of iterations after which the learning rate is decreased.
See also
- Returns:
double Learning Rate Update Step Ratio
-
OCRTrainingParameters &set_step_ratio(double step_ratio)#
Set Learning Rate Update Step Ratio with double value.
The ratio of iterations after which the learning rate is decreased.
See also
- Parameters:
step_ratio – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
int get_sigma() const#
Get Gaussian Kernel Size.
Determines the spread of Gaussian distribution used to generate heatmap. A larger value will result in a larger area of distribution, vice versa.
See also
- Returns:
int Gaussian Kernel Size
-
OCRTrainingParameters &set_sigma(int sigma)#
Set Gaussian Kernel Size with int value.
Determines the spread of Gaussian distribution used to generate heatmap. A larger value will result in a larger area of distribution, vice versa.
See also
- Parameters:
sigma – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
int get_training_feature_size() const#
Get Training Feature Size.
The desired size to which the input features are scaled
See also
- Returns:
int Training Feature Size
-
OCRTrainingParameters &set_training_feature_size(int training_feature_size)#
Set Training Feature Size with int value.
The desired size to which the input features are scaled
See also
- Parameters:
training_feature_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
const OCRAnnulusParameters &get_annulus_recognition() const#
Get Annulus Character Recognition.
Annulus Character Recognition Parameters
See also
- Returns:
const OCRAnnulusParameters & Annulus Character Recognition
-
OCRTrainingParameters &set_annulus_recognition(const OCRAnnulusParameters &annulus_recognition)#
Set Annulus Character Recognition with OCRAnnulusParameters value.
Annulus Character Recognition Parameters
See also
- Parameters:
annulus_recognition – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
OCRAnnulusParameters &get_annulus_recognition()#
Get mutable reference of Annulus Character Recognition.
Annulus Character Recognition Parameters
- Returns:
OCRTrainingParameters& the mutable reference of the group.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
OCRTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
OCRTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
OCRTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
Location Tool Parameters#
-
class LocationMaxInputSize : public visionflow::param::ISchemable#
LocationMaxInputSize Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Set Max Size.
Enable this option to manually set the maximum side length of the input image.
See also
- Returns:
bool Enable Set Max Size
-
LocationMaxInputSize &set_enable(bool enable)#
Set Enable Set Max Size with bool value.
Enable this option to manually set the maximum side length of the input image.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationMaxInputSize& the reference of this object.
-
int get_max_side_len() const#
Get Max Input Size.
Scale the long edge of the input image to the maximum side length, and scale the short edge equally, if the algorithm calculates that the required maximum edge length is smaller than this parameter, the maximum edge length will be set automatically
See also
- Returns:
int Max Input Size
-
LocationMaxInputSize &set_max_side_len(int max_side_len)#
Set Max Input Size with int value.
Scale the long edge of the input image to the maximum side length, and scale the short edge equally, if the algorithm calculates that the required maximum edge length is smaller than this parameter, the maximum edge length will be set automatically
See also
- Parameters:
max_side_len – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationMaxInputSize& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class LocationModelParameters : public visionflow::param::ISchemable#
LocationModelParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::string &get_model_arch() const#
Get Model Architecture.
There are two different model architectures: the High-Precision-Location model and Fast-Location model, The high-precision version is suitable for scenarios with positioning accuracy up to 1 pixel, and the fast version is suitable for most scenarios with shorter training, inference time and lower GPU memory requirements.
See also
- Returns:
const std::string & Model Architecture
-
LocationModelParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
There are two different model architectures: the High-Precision-Location model and Fast-Location model, The high-precision version is suitable for scenarios with positioning accuracy up to 1 pixel, and the fast version is suitable for most scenarios with shorter training, inference time and lower GPU memory requirements.
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationModelParameters& the reference of this object.
-
bool get_train_angle() const#
Get Training With Angle.
Enable this option to training the model with the angle information in the label.
See also
- Returns:
bool Training With Angle
-
LocationModelParameters &set_train_angle(bool train_angle)#
Set Training With Angle with bool value.
Enable this option to training the model with the angle information in the label.
See also
- Parameters:
train_angle – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationModelParameters& the reference of this object.
-
bool get_train_rect() const#
Get Training With Rect Size.
Enable this option to training the model with the the rectangle size information of the target box
See also
- Returns:
bool Training With Rect Size
-
LocationModelParameters &set_train_rect(bool train_rect)#
Set Training With Rect Size with bool value.
Enable this option to training the model with the the rectangle size information of the target box
See also
- Parameters:
train_rect – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationModelParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class LocationTargetParameters : public visionflow::param::ISchemable#
LocationTargetParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_min_target_width() const#
Get Minimum Target Width.
The Minimum target width (Pixel value in X-axis direction)
See also
- Returns:
double Minimum Target Width
-
LocationTargetParameters &set_min_target_width(double min_target_width)#
Set Minimum Target Width with double value.
The Minimum target width (Pixel value in X-axis direction)
See also
- Parameters:
min_target_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTargetParameters& the reference of this object.
-
double get_min_target_height() const#
Get Minimum Target Height.
The Minimum target height (Pixel value in Y-axis direction)
See also
- Returns:
double Minimum Target Height
-
LocationTargetParameters &set_min_target_height(double min_target_height)#
Set Minimum Target Height with double value.
The Minimum target height (Pixel value in Y-axis direction)
See also
- Parameters:
min_target_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTargetParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class NodeMatchTemplate : public visionflow::param::ISchemable#
NodeMatchTemplate Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Note Match Template.
Enable this option to use this template
See also
- Returns:
bool Enable Note Match Template
-
NodeMatchTemplate &set_enable(bool enable)#
Set Enable Note Match Template with bool value.
Enable this option to use this template
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
const TemplateMode &get_template_mode() const#
Get Template Mode.
Set the value type of points and offset. When the template mode is set to kValueByPixel, the Coordinates of points and the offset should be set using pixel value. When the template mode is set to kValueByRatio, the Coordinates of points and the offset should be set using ratio value. When the Area Value Type is modified, the Coordinates of points and the offset should be modified.
See also
- Returns:
const TemplateMode & Template Mode
-
NodeMatchTemplate &set_template_mode(const TemplateMode &template_mode)#
Set Template Mode with TemplateMode value.
Set the value type of points and offset. When the template mode is set to kValueByPixel, the Coordinates of points and the offset should be set using pixel value. When the template mode is set to kValueByRatio, the Coordinates of points and the offset should be set using ratio value. When the Area Value Type is modified, the Coordinates of points and the offset should be modified.
See also
- Parameters:
template_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
int get_max_match_results_num() const#
Get Max Match Results Num.
the maximum number of template matching results. When the value is - 1, the maximum number of matching results is not limited.
See also
- Returns:
int Max Match Results Num
-
NodeMatchTemplate &set_max_match_results_num(int max_match_results_num)#
Set Max Match Results Num with int value.
the maximum number of template matching results. When the value is - 1, the maximum number of matching results is not limited.
See also
- Parameters:
max_match_results_num – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
int get_max_miss_points_num() const#
Get Max Miss Points Num.
The number of points allowed to be missed during matching
See also
- Returns:
int Max Miss Points Num
-
NodeMatchTemplate &set_max_miss_points_num(int max_miss_points_num)#
Set Max Miss Points Num with int value.
The number of points allowed to be missed during matching
See also
- Parameters:
max_miss_points_num – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
const std::vector<KeyPointNode> &get_points() const#
Get Keypoints.
The key points of the template
See also
- Returns:
const std::vector<KeyPointNode> & Keypoints
-
NodeMatchTemplate &set_points(const std::vector<KeyPointNode> &points)#
Set Keypoints with std::vector<KeyPointNode> value.
The key points of the template
See also
- Parameters:
points – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
const KeyPointNode &get_points(size_t index) const#
Get value in Keypoints with index.
Warning
The index must be less than get_points_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const KeyPointNode & value in Keypoints at index.
-
size_t get_points_size() const#
Get the size of Keypoints.
- Returns:
size_t the size of Keypoints
-
KeyPointNode &get_points(size_t index)#
Get mutable reference of value in Keypoints with index.
Warning
The index must be less than get_points_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
KeyPointNode& the mutable reference of value in Keypoints at index.
-
double get_max_distance() const#
Get Max Distance.
The maximum allowed distance between the template keypoints and the keypoints to be matched. Results with a distance greater than this value will be filtered out. The value can be either in absolute pixel or relative to the view height, depending on the template_mode.
See also
- Returns:
double Max Distance
-
NodeMatchTemplate &set_max_distance(double max_distance)#
Set Max Distance with double value.
The maximum allowed distance between the template keypoints and the keypoints to be matched. Results with a distance greater than this value will be filtered out. The value can be either in absolute pixel or relative to the view height, depending on the template_mode.
See also
- Parameters:
max_distance – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
bool get_is_scalable() const#
Get Target Scalable.
Enable this option if the scale of target to be matched is not fixed, And you should set the target scale range
See also
- Returns:
bool Target Scalable
-
NodeMatchTemplate &set_is_scalable(bool is_scalable)#
Set Target Scalable with bool value.
Enable this option if the scale of target to be matched is not fixed, And you should set the target scale range
See also
- Parameters:
is_scalable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
const std::vector<double> &get_scale_range() const#
Get Scale Range.
The target scale range
See also
- Returns:
const std::vector<double> & Scale Range
-
NodeMatchTemplate &set_scale_range(const std::vector<double> &scale_range)#
Set Scale Range with std::vector<double> value.
The target scale range
See also
- Parameters:
scale_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
bool scale_range_contains(double value) const#
Check if the Scale Range contains the value.
- Returns:
bool true if the Scale Range contains the value, otherwise false.
-
double get_scale_range_left() const#
Get left point value of Scale Range.
See also
- Returns:
const std::vector<double> & left point value of Scale Range
-
double get_scale_range_right() const#
Get the right point value of Scale Range.
See also
- Returns:
const std::vector<double> & the right point value of Scale Range
-
NodeMatchTemplate &set_scale_range_left(double scale_range_left)#
Set left point value of Scale Range with std::vector<double> value.
The target scale range
See also
- Parameters:
scale_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
NodeMatchTemplate &set_scale_range_right(double scale_range_right)#
Set the right point value of Scale Range with std::vector<double> value.
The target scale range
See also
- Parameters:
scale_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
bool get_is_rotatable() const#
Get Target Rotatable.
Enable this option if the angle of target to be matched is not fixed, And you should set the target rotate angle range
See also
- Returns:
bool Target Rotatable
-
NodeMatchTemplate &set_is_rotatable(bool is_rotatable)#
Set Target Rotatable with bool value.
Enable this option if the angle of target to be matched is not fixed, And you should set the target rotate angle range
See also
- Parameters:
is_rotatable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
const std::vector<double> &get_rotate_range() const#
Get Rotate Range (Degree).
The target rotate range
See also
- Returns:
const std::vector<double> & Rotate Range (Degree)
-
NodeMatchTemplate &set_rotate_range(const std::vector<double> &rotate_range)#
Set Rotate Range (Degree) with std::vector<double> value.
The target rotate range
See also
- Parameters:
rotate_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
bool rotate_range_contains(double value) const#
Check if the Rotate Range (Degree) contains the value.
- Returns:
bool true if the Rotate Range (Degree) contains the value, otherwise false.
-
double get_rotate_range_left() const#
Get left point value of Rotate Range (Degree).
See also
- Returns:
const std::vector<double> & left point value of Rotate Range (Degree)
-
double get_rotate_range_right() const#
Get the right point value of Rotate Range (Degree).
See also
- Returns:
const std::vector<double> & the right point value of Rotate Range (Degree)
-
NodeMatchTemplate &set_rotate_range_left(double rotate_range_left)#
Set left point value of Rotate Range (Degree) with std::vector<double> value.
The target rotate range
See also
- Parameters:
rotate_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
NodeMatchTemplate &set_rotate_range_right(double rotate_range_right)#
Set the right point value of Rotate Range (Degree) with std::vector<double> value.
The target rotate range
See also
- Parameters:
rotate_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
double get_template_angle() const#
Get Template angle (Degree).
Template angle is calculated and displayed the software in real time
See also
- Returns:
double Template angle (Degree)
-
NodeMatchTemplate &set_template_angle(double template_angle)#
Set Template angle (Degree) with double value.
Template angle is calculated and displayed the software in real time
See also
- Parameters:
template_angle – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
NodeMatchTemplate& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class LocationTemplates : public visionflow::param::SchemableParameter#
LocationTemplates Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::map<std::string, NodeMatchTemplate> &get_node_templates() const#
Get Node Templates.
The Location node match templates
See also
- Returns:
const std::map<std::string, NodeMatchTemplate> & Node Templates
-
LocationTemplates &set_node_templates(const std::map<std::string, NodeMatchTemplate> &node_templates)#
Set Node Templates with std::map<std::string, NodeMatchTemplate> value.
The Location node match templates
See also
- Parameters:
node_templates – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTemplates& the reference of this object.
-
const NodeMatchTemplate &get_node_templates(const std::string &key) const#
Get value in Node Templates with key.
Warning
The key must be exist in Node Templates. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, NodeMatchTemplate> & value in Node Templates at key.
-
LocationTemplates &set_node_templates(const std::string &key, const NodeMatchTemplate &value)#
Set value in Node Templates with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTemplates& the reference of this object.
-
bool node_templates_contains(const std::string &key) const#
Check if the key is exist in Node Templates.
- Returns:
bool true if the key is exist in Node Templates, otherwise false.
-
size_t get_node_templates_size() const#
Get the size of Node Templates.
- Returns:
size_t the size of Node Templates
-
NodeMatchTemplate &get_node_templates(const std::string &key)#
Get mutable reference of value in Node Templates with key. A new key and default value will be created if the key does not exist.
- Returns:
NodeMatchTemplate& the mutable reference of value in Node Templates at key.
-
virtual const std::string &schema_str() const override#
-
class LocationTrainingParameters : public visionflow::param::SchemableParameter#
LocationTrainingParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
LocationTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Training Batch Size
-
LocationTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
LocationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
LocationTrainingParameters& the mutable reference of the group.
-
const LocationMaxInputSize &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const LocationMaxInputSize & Input Shape
-
LocationTrainingParameters &set_input_shape(const LocationMaxInputSize &input_shape)#
Set Input Shape with LocationMaxInputSize value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
LocationMaxInputSize &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
LocationTrainingParameters& the mutable reference of the group.
-
const LocationModelParameters &get_model_param() const#
Get Model param.
Location model parameters
See also
- Returns:
const LocationModelParameters & Model param
-
LocationTrainingParameters &set_model_param(const LocationModelParameters &model_param)#
Set Model param with LocationModelParameters value.
Location model parameters
See also
- Parameters:
model_param – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
LocationModelParameters &get_model_param()#
Get mutable reference of Model param.
Location model parameters
- Returns:
LocationTrainingParameters& the mutable reference of the group.
-
const LocationTargetParameters &get_target_feature() const#
Get Target Feature.
Location Target Feature Parameters
See also
- Returns:
const LocationTargetParameters & Target Feature
-
LocationTrainingParameters &set_target_feature(const LocationTargetParameters &target_feature)#
Set Target Feature with LocationTargetParameters value.
Location Target Feature Parameters
See also
- Parameters:
target_feature – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationTrainingParameters& the reference of this object.
-
LocationTargetParameters &get_target_feature()#
Get mutable reference of Target Feature.
Location Target Feature Parameters
- Returns:
LocationTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class LocationFilterParameters : public visionflow::param::SchemableParameter#
LocationFilterParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_threshold() const#
Get Confidence Threshold.
Keypoints with confidence greater than this threshold will be determined as a character target.
See also
- Returns:
double Confidence Threshold
-
LocationFilterParameters &set_threshold(double threshold)#
Set Confidence Threshold with double value.
Keypoints with confidence greater than this threshold will be determined as a character target.
See also
- Parameters:
threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationFilterParameters& the reference of this object.
-
double get_target_overlap_ratio() const#
Get Target Overlap Ratio.
Some redundant points will be removed to ensure that the intersection ratio between points within each category does not exceed this value.target_overlap_ratio = intersection_area/Union_area.
See also
- Returns:
double Target Overlap Ratio
-
LocationFilterParameters &set_target_overlap_ratio(double target_overlap_ratio)#
Set Target Overlap Ratio with double value.
Some redundant points will be removed to ensure that the intersection ratio between points within each category does not exceed this value.target_overlap_ratio = intersection_area/Union_area.
See also
- Parameters:
target_overlap_ratio – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
LocationFilterParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
AssemblyVerification Tool Parameters#
-
class AssemblyVerificationMaxInputSize : public visionflow::param::ISchemable#
AssemblyVerificationMaxInputSize Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Set Max Size.
Enable this option to manually set the maximum side length of the input image.
See also
- Returns:
bool Enable Set Max Size
-
AssemblyVerificationMaxInputSize &set_enable(bool enable)#
Set Enable Set Max Size with bool value.
Enable this option to manually set the maximum side length of the input image.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationMaxInputSize& the reference of this object.
-
int get_max_side_len() const#
Get Max Input Size.
Scale the long edge of the input image to the maximum side length, and scale the short edge equally, if the algorithm calculates that the required maximum edge length is smaller than this parameter, the maximum edge length will be set automatically
See also
- Returns:
int Max Input Size
-
AssemblyVerificationMaxInputSize &set_max_side_len(int max_side_len)#
Set Max Input Size with int value.
Scale the long edge of the input image to the maximum side length, and scale the short edge equally, if the algorithm calculates that the required maximum edge length is smaller than this parameter, the maximum edge length will be set automatically
See also
- Parameters:
max_side_len – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationMaxInputSize& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationModelParameters : public visionflow::param::ISchemable#
AssemblyVerificationModelParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_train_angle() const#
Get Training With Angle.
Enable this option to training the model with the angle infomations in the label.
See also
- Returns:
bool Training With Angle
-
AssemblyVerificationModelParameters &set_train_angle(bool train_angle)#
Set Training With Angle with bool value.
Enable this option to training the model with the angle infomations in the label.
See also
- Parameters:
train_angle – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationModelParameters& the reference of this object.
-
bool get_train_rect() const#
Get Training With Rect Size.
Enable this option to training the model with the the rectangle size infomation of the target box
See also
- Returns:
bool Training With Rect Size
-
AssemblyVerificationModelParameters &set_train_rect(bool train_rect)#
Set Training With Rect Size with bool value.
Enable this option to training the model with the the rectangle size infomation of the target box
See also
- Parameters:
train_rect – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationModelParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationTargetParameters : public visionflow::param::ISchemable#
AssemblyVerificationTargetParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_min_target_width() const#
Get Minimum Target Width.
The Minimum target width (Pixel value in X-axis direction)
See also
- Returns:
double Minimum Target Width
-
AssemblyVerificationTargetParameters &set_min_target_width(double min_target_width)#
Set Minimum Target Width with double value.
The Minimum target width (Pixel value in X-axis direction)
See also
- Parameters:
min_target_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTargetParameters& the reference of this object.
-
double get_min_target_height() const#
Get Minimum Target Height.
The Minimum target height (Pixel value in Y-axis direction)
See also
- Returns:
double Minimum Target Height
-
AssemblyVerificationTargetParameters &set_min_target_height(double min_target_height)#
Set Minimum Target Height with double value.
The Minimum target height (Pixel value in Y-axis direction)
See also
- Parameters:
min_target_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTargetParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationLayOutArea : public visionflow::param::ISchemable#
AssemblyVerificationLayOutArea Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_x() const#
Get X-Value.
X-direction coordinate value of the center of the area. When the template mode is set to kValueByPixel, X-Value should be set using pixel value. When the template mode is set to kValueByRatio, X-Value should be set using ratio value. When the template mode is modified, X-Value needs to be modified.
See also
- Returns:
double X-Value
-
AssemblyVerificationLayOutArea &set_x(double x)#
Set X-Value with double value.
X-direction coordinate value of the center of the area. When the template mode is set to kValueByPixel, X-Value should be set using pixel value. When the template mode is set to kValueByRatio, X-Value should be set using ratio value. When the template mode is modified, X-Value needs to be modified.
See also
- Parameters:
x – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
double get_y() const#
Get Y-Value.
Y-direction coordinate value of the center of the area. When the template mode is set to kValueByPixel, Y-Value should be set using pixel value. When the template mode is set to kValueByRatio, Y-Value should be set using ratio value. When the template mode is modified, Y-Value needs to be modified.
See also
- Returns:
double Y-Value
-
AssemblyVerificationLayOutArea &set_y(double y)#
Set Y-Value with double value.
Y-direction coordinate value of the center of the area. When the template mode is set to kValueByPixel, Y-Value should be set using pixel value. When the template mode is set to kValueByRatio, Y-Value should be set using ratio value. When the template mode is modified, Y-Value needs to be modified.
See also
- Parameters:
y – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
double get_w() const#
Get W-Value.
width of the area. When the template mode is set to kValueByPixel, W-Value should be set using pixel value. When the template mode is set to kValueByRatio, W-Value should be set using ratio value. When the template mode is modified, W-Value needs to be modified.
See also
- Returns:
double W-Value
-
AssemblyVerificationLayOutArea &set_w(double w)#
Set W-Value with double value.
width of the area. When the template mode is set to kValueByPixel, W-Value should be set using pixel value. When the template mode is set to kValueByRatio, W-Value should be set using ratio value. When the template mode is modified, W-Value needs to be modified.
See also
- Parameters:
w – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
double get_h() const#
Get H-Value.
height of the area. When the template mode is set to kValueByPixel, H-Value should be set using pixel value. When the template mode is set to kValueRatio, H-Value should be set using ratio value. When the template mode is modified, H-Value needs to be modified.
See also
- Returns:
double H-Value
-
AssemblyVerificationLayOutArea &set_h(double h)#
Set H-Value with double value.
height of the area. When the template mode is set to kValueByPixel, H-Value should be set using pixel value. When the template mode is set to kValueRatio, H-Value should be set using ratio value. When the template mode is modified, H-Value needs to be modified.
See also
- Parameters:
h – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
const std::vector<std::string> &get_target_category() const#
Get Target Category.
Categories of targets in the area
See also
- Returns:
const std::vector<std::string> & Target Category
-
AssemblyVerificationLayOutArea &set_target_category(const std::vector<std::string> &target_category)#
Set Target Category with std::vector<std::string> value.
Categories of targets in the area
See also
- Parameters:
target_category – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
const std::string &get_target_category(size_t index) const#
Get value in Target Category with index.
Warning
The index must be less than get_target_category_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::string & value in Target Category at index.
-
size_t get_target_category_size() const#
Get the size of Target Category.
- Returns:
size_t the size of Target Category
-
int get_target_number() const#
Get Target Number.
Number of targets in the region
See also
- Returns:
int Target Number
-
AssemblyVerificationLayOutArea &set_target_number(int target_number)#
Set Target Number with int value.
Number of targets in the region
See also
- Parameters:
target_number – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
bool get_use_target_angle_range() const#
Get Use Target Angle Range.
Enable this option if the angle of target to be matched needs to belimited, And you should set the target angle range.
See also
- Returns:
bool Use Target Angle Range
-
AssemblyVerificationLayOutArea &set_use_target_angle_range(bool use_target_angle_range)#
Set Use Target Angle Range with bool value.
Enable this option if the angle of target to be matched needs to belimited, And you should set the target angle range.
See also
- Parameters:
use_target_angle_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
const std::vector<double> &get_target_angle_range() const#
Get Target Angle Range (Degree).
The angle range target limited to
See also
- Returns:
const std::vector<double> & Target Angle Range (Degree)
-
AssemblyVerificationLayOutArea &set_target_angle_range(const std::vector<double> &target_angle_range)#
Set Target Angle Range (Degree) with std::vector<double> value.
The angle range target limited to
See also
- Parameters:
target_angle_range – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
bool target_angle_range_contains(double value) const#
Check if the Target Angle Range (Degree) contains the value.
- Returns:
bool true if the Target Angle Range (Degree) contains the value, otherwise false.
-
double get_target_angle_range_left() const#
Get left point value of Target Angle Range (Degree).
See also
- Returns:
const std::vector<double> & left point value of Target Angle Range (Degree)
-
double get_target_angle_range_right() const#
Get the right point value of Target Angle Range (Degree).
See also
- Returns:
const std::vector<double> & the right point value of Target Angle Range (Degree)
-
AssemblyVerificationLayOutArea &set_target_angle_range_left(double target_angle_range_left)#
Set left point value of Target Angle Range (Degree) with std::vector<double> value.
The angle range target limited to
See also
- Parameters:
target_angle_range_left – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
AssemblyVerificationLayOutArea &set_target_angle_range_right(double target_angle_range_right)#
Set the right point value of Target Angle Range (Degree) with std::vector<double> value.
The angle range target limited to
See also
- Parameters:
target_angle_range_right – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationLayOutArea& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationTemplates : public visionflow::param::SchemableParameter#
AssemblyVerificationTemplates Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const TemplateMode &get_template_mode() const#
Get Template Mode.
Set the Value Type of the central coordinates of the region and the width and height of the area. When the template mode is set to kValueByPixel, X-Value Y-Value W-Value H-Value should be set using pixel value. When the template mode is set to kValueByRatio, X-Value Y-Value W-Value H-Value should be set using ratio value. When the template mode is modified, X-Value Y-Value W-Value H-Value needs to be modified.
See also
- Returns:
const TemplateMode & Template Mode
-
AssemblyVerificationTemplates &set_template_mode(const TemplateMode &template_mode)#
Set Template Mode with TemplateMode value.
Set the Value Type of the central coordinates of the region and the width and height of the area. When the template mode is set to kValueByPixel, X-Value Y-Value W-Value H-Value should be set using pixel value. When the template mode is set to kValueByRatio, X-Value Y-Value W-Value H-Value should be set using ratio value. When the template mode is modified, X-Value Y-Value W-Value H-Value needs to be modified.
See also
- Parameters:
template_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTemplates& the reference of this object.
-
const std::map<std::string, AssemblyVerificationLayOutArea> &get_areas() const#
Get Areas.
The areas inside the template. The key of the map is the name of area. The value of the map is the parameter of area.
See also
- Returns:
const std::map<std::string, AssemblyVerificationLayOutArea> & Areas
-
AssemblyVerificationTemplates &set_areas(const std::map<std::string, AssemblyVerificationLayOutArea> &areas)#
Set Areas with std::map<std::string, AssemblyVerificationLayOutArea> value.
The areas inside the template. The key of the map is the name of area. The value of the map is the parameter of area.
See also
- Parameters:
areas – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTemplates& the reference of this object.
-
const AssemblyVerificationLayOutArea &get_areas(const std::string &key) const#
Get value in Areas with key.
Warning
The key must be exist in Areas. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, AssemblyVerificationLayOutArea> & value in Areas at key.
-
AssemblyVerificationTemplates &set_areas(const std::string &key, const AssemblyVerificationLayOutArea &value)#
Set value in Areas with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTemplates& the reference of this object.
-
bool areas_contains(const std::string &key) const#
Check if the key is exist in Areas.
- Returns:
bool true if the key is exist in Areas, otherwise false.
-
size_t get_areas_size() const#
Get the size of Areas.
- Returns:
size_t the size of Areas
-
AssemblyVerificationLayOutArea &get_areas(const std::string &key)#
Get mutable reference of value in Areas with key. A new key and default value will be created if the key does not exist.
- Returns:
AssemblyVerificationLayOutArea& the mutable reference of value in Areas at key.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationTrainingParameters : public visionflow::param::SchemableParameter#
AssemblyVerificationTrainingParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
AssemblyVerificationTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Training Batch Size
-
AssemblyVerificationTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
AssemblyVerificationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
AssemblyVerificationTrainingParameters& the mutable reference of the group.
-
const AssemblyVerificationMaxInputSize &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const AssemblyVerificationMaxInputSize & Input Shape
-
AssemblyVerificationTrainingParameters &set_input_shape(const AssemblyVerificationMaxInputSize &input_shape)#
Set Input Shape with AssemblyVerificationMaxInputSize value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
AssemblyVerificationMaxInputSize &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
AssemblyVerificationTrainingParameters& the mutable reference of the group.
-
const AssemblyVerificationModelParameters &get_model_param() const#
Get Model param.
AssemblyVerification model parameters
See also
- Returns:
const AssemblyVerificationModelParameters & Model param
-
AssemblyVerificationTrainingParameters &set_model_param(const AssemblyVerificationModelParameters &model_param)#
Set Model param with AssemblyVerificationModelParameters value.
AssemblyVerification model parameters
See also
- Parameters:
model_param – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
AssemblyVerificationModelParameters &get_model_param()#
Get mutable reference of Model param.
AssemblyVerification model parameters
- Returns:
AssemblyVerificationTrainingParameters& the mutable reference of the group.
-
const AssemblyVerificationTargetParameters &get_target_feature() const#
Get Target Feature.
AssemblyVerification Target Feature Parameters
See also
- Returns:
const AssemblyVerificationTargetParameters & Target Feature
-
AssemblyVerificationTrainingParameters &set_target_feature(const AssemblyVerificationTargetParameters &target_feature)#
Set Target Feature with AssemblyVerificationTargetParameters value.
AssemblyVerification Target Feature Parameters
See also
- Parameters:
target_feature – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationTrainingParameters& the reference of this object.
-
AssemblyVerificationTargetParameters &get_target_feature()#
Get mutable reference of Target Feature.
AssemblyVerification Target Feature Parameters
- Returns:
AssemblyVerificationTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class AssemblyVerificationFilterParameters : public visionflow::param::SchemableParameter#
AssemblyVerificationFilterParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_threshold() const#
Get Confidence Threshold.
Keypoints with confidence greater than this threshold will be determined as a character target.
See also
- Returns:
double Confidence Threshold
-
AssemblyVerificationFilterParameters &set_threshold(double threshold)#
Set Confidence Threshold with double value.
Keypoints with confidence greater than this threshold will be determined as a character target.
See also
- Parameters:
threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationFilterParameters& the reference of this object.
-
double get_density() const#
Get Search Density.
SKeep only one result within the radius of target size * density
See also
- Returns:
double Search Density
-
AssemblyVerificationFilterParameters &set_density(double density)#
Set Search Density with double value.
SKeep only one result within the radius of target size * density
See also
- Parameters:
density – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
AssemblyVerificationFilterParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Classification Tool Parameters#
-
class ClassificationInputShape : public visionflow::param::ISchemable#
ClassificationInputShape Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Customize Input Size.
Enable this option to customize the model input shape. With this option enabled, the the input image will be resized into the customized shape before inference it.
See also
- Returns:
bool Customize Input Size
-
ClassificationInputShape &set_enable(bool enable)#
Set Customize Input Size with bool value.
Enable this option to customize the model input shape. With this option enabled, the the input image will be resized into the customized shape before inference it.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationInputShape& the reference of this object.
-
int get_base_input_width() const#
Get Input Image Width.
See also
- Returns:
int Input Image Width
-
ClassificationInputShape &set_base_input_width(int base_input_width)#
Set Input Image Width with int value.
See also
- Parameters:
base_input_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationInputShape& the reference of this object.
-
int get_base_input_height() const#
Get Input Image Height.
See also
- Returns:
int Input Image Height
-
ClassificationInputShape &set_base_input_height(int base_input_height)#
Set Input Image Height with int value.
See also
- Parameters:
base_input_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationInputShape& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ClassificationTrainingParameters : public visionflow::param::SchemableParameter#
ClassificationTrainingParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
ClassificationTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Returns:
int Training Batch Size
-
ClassificationTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16. The classification module needs to be set larger, generally 32, 64
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
const ClassificationInputShape &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const ClassificationInputShape & Input Shape
-
ClassificationTrainingParameters &set_input_shape(const ClassificationInputShape &input_shape)#
Set Input Shape with ClassificationInputShape value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
ClassificationInputShape &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
ClassificationTrainingParameters& the mutable reference of the group.
-
const TrainingMode &get_training_mode() const#
Get Training Mode.
The ‘Normal’ mode is the default mode, which trains the model from scratch/pre-train. The ‘Incremental’ mode uses an incremental training algorithm to update the model parameters based on new data, without retraining the entire model from scratch.
See also
- Returns:
const TrainingMode & Training Mode
-
ClassificationTrainingParameters &set_training_mode(const TrainingMode &training_mode)#
Set Training Mode with TrainingMode value.
The ‘Normal’ mode is the default mode, which trains the model from scratch/pre-train. The ‘Incremental’ mode uses an incremental training algorithm to update the model parameters based on new data, without retraining the entire model from scratch.
See also
- Parameters:
training_mode – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
bool get_only_check() const#
Get Only Check.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Returns:
bool Only Check
-
ClassificationTrainingParameters &set_only_check(bool only_check)#
Set Only Check with bool value.
Default is False. If set to True, the trainer will only check if it is possible to train in the given training mode without actually performing the training.
See also
- Parameters:
only_check – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
const std::string &get_model_arch() const#
Get Model Architecture.
The Fast-Model is suitable for most scenarios, but the classification accuracy may be reduced in scenarios with more categories (more than 10 categories) and lower differentiation between categories, in which you can use the High-Precision-Model, although this will result in a slightly longer training and inference time.
See also
- Returns:
const std::string & Model Architecture
-
ClassificationTrainingParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
The Fast-Model is suitable for most scenarios, but the classification accuracy may be reduced in scenarios with more categories (more than 10 categories) and lower differentiation between categories, in which you can use the High-Precision-Model, although this will result in a slightly longer training and inference time.
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
ClassificationTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
ClassificationTrainingParameters& the mutable reference of the group.
-
bool get_small_target() const#
Get Detect Small Target.
Enable this option to detect small target
See also
- Returns:
bool Detect Small Target
-
ClassificationTrainingParameters &set_small_target(bool small_target)#
Set Detect Small Target with bool value.
Enable this option to detect small target
See also
- Parameters:
small_target – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
bool get_with_contrastive() const#
Get With Contrastive Learning.
With this option enabled, The algorithm will try to improve the model performance by comparing the difference between sample and defective image. This mode is only applicable to the mixed images composed of a sample image and a defective image, it’s not applicable to single-image-samples or mixed images composed of different photos of the same defect.
See also
- Returns:
bool With Contrastive Learning
-
ClassificationTrainingParameters &set_with_contrastive(bool with_contrastive)#
Set With Contrastive Learning with bool value.
With this option enabled, The algorithm will try to improve the model performance by comparing the difference between sample and defective image. This mode is only applicable to the mixed images composed of a sample image and a defective image, it’s not applicable to single-image-samples or mixed images composed of different photos of the same defect.
See also
- Parameters:
with_contrastive – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationTrainingParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ClassificationInferParameters : public visionflow::param::SchemableParameter#
ClassificationInferParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_visualize_param() const#
Get Heat map visualization.
Heat map visualization
See also
- Returns:
bool Heat map visualization
-
ClassificationInferParameters &set_visualize_param(bool visualize_param)#
Set Heat map visualization with bool value.
Heat map visualization
See also
- Parameters:
visualize_param – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ClassificationInferParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
Detection Tool Parameters#
-
class DetectionTrainingParameters : public visionflow::param::SchemableParameter#
DetectionTrainingParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_epoch() const#
Get Epoch.
Number of epochs to train
See also
- Returns:
int Epoch
-
DetectionTrainingParameters &set_epoch(int epoch)#
Set Epoch with int value.
Number of epochs to train
See also
- Parameters:
epoch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
int get_batch_size() const#
Get Training Batch Size.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16.
See also
- Returns:
int Training Batch Size
-
DetectionTrainingParameters &set_batch_size(int batch_size)#
Set Training Batch Size with int value.
The number of images involved in training in each iteration of network training. A suitable batch size can make full use of hardware and improve the convergence speed. Common values are 4, 8, and 16.
See also
- Parameters:
batch_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
double get_lr_decay() const#
Get Learning Rate Decay.
The learning rate is multiplied by this value every epoch. The larger the value, the faster the learning rate decreases
See also
- Returns:
double Learning Rate Decay
-
DetectionTrainingParameters &set_lr_decay(double lr_decay)#
Set Learning Rate Decay with double value.
The learning rate is multiplied by this value every epoch. The larger the value, the faster the learning rate decreases
See also
- Parameters:
lr_decay – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
const std::string &get_model_arch() const#
Get Model Architecture.
The 108 model only supports single-class detection and is fast with inference,the 110 model supports multi-class detection and more comprehensive reasoning
See also
- Returns:
const std::string & Model Architecture
-
DetectionTrainingParameters &set_model_arch(const std::string &model_arch)#
Set Model Architecture with std::string value.
The 108 model only supports single-class detection and is fast with inference,the 110 model supports multi-class detection and more comprehensive reasoning
See also
- Parameters:
model_arch – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
const DataAugmentation &get_augmentations() const#
Get Data Augmentation.
Data Augmentation Parameters
See also
- Returns:
const DataAugmentation & Data Augmentation
-
DetectionTrainingParameters &set_augmentations(const DataAugmentation &augmentations)#
Set Data Augmentation with DataAugmentation value.
Data Augmentation Parameters
See also
- Parameters:
augmentations – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
DataAugmentation &get_augmentations()#
Get mutable reference of Data Augmentation.
Data Augmentation Parameters
- Returns:
DetectionTrainingParameters& the mutable reference of the group.
-
int get_max_size() const#
Get Max Length.
To resize input images, the longer side is scaled down to match the maximum edgelength while the shorter side is scaled proportionally. If the calculated maximumedge length is smaller than the given parameter, the algorithm will automaticallyadjust the maximum edge length. Setting a larger maximum edge length can improve detection accuracy, but it also requires longer training and inference time and higher GPU memory usage.
See also
- Returns:
int Max Length
-
DetectionTrainingParameters &set_max_size(int max_size)#
Set Max Length with int value.
To resize input images, the longer side is scaled down to match the maximum edgelength while the shorter side is scaled proportionally. If the calculated maximumedge length is smaller than the given parameter, the algorithm will automaticallyadjust the maximum edge length. Setting a larger maximum edge length can improve detection accuracy, but it also requires longer training and inference time and higher GPU memory usage.
See also
- Parameters:
max_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
const DetectionInputShape &get_input_shape() const#
Get Input Shape.
Input Shape Parameters
See also
- Returns:
const DetectionInputShape & Input Shape
-
DetectionTrainingParameters &set_input_shape(const DetectionInputShape &input_shape)#
Set Input Shape with DetectionInputShape value.
Input Shape Parameters
See also
- Parameters:
input_shape – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
DetectionInputShape &get_input_shape()#
Get mutable reference of Input Shape.
Input Shape Parameters
- Returns:
DetectionTrainingParameters& the mutable reference of the group.
-
const DetectionTrainingStrategy &get_train_tricks() const#
Get train tricks.
Detection Strategy Parameters
See also
- Returns:
const DetectionTrainingStrategy & train tricks
-
DetectionTrainingParameters &set_train_tricks(const DetectionTrainingStrategy &train_tricks)#
Set train tricks with DetectionTrainingStrategy value.
Detection Strategy Parameters
See also
- Parameters:
train_tricks – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingParameters& the reference of this object.
-
DetectionTrainingStrategy &get_train_tricks()#
Get mutable reference of train tricks.
Detection Strategy Parameters
- Returns:
DetectionTrainingParameters& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#
-
class DetectionInferParameters : public visionflow::param::SchemableParameter#
DetectionInferParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_confidence_threshold() const#
Get Confidence Threshold.
Only retain objects with a confidence score greater than this threshold.
See also
- Returns:
double Confidence Threshold
-
DetectionInferParameters &set_confidence_threshold(double confidence_threshold)#
Set Confidence Threshold with double value.
Only retain objects with a confidence score greater than this threshold.
See also
- Parameters:
confidence_threshold – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInferParameters& the reference of this object.
-
int get_min_target_size() const#
Get Minimum Target Size.
Only retain objects with a width and height greater than this minimum size.
See also
- Returns:
int Minimum Target Size
-
DetectionInferParameters &set_min_target_size(int min_target_size)#
Set Minimum Target Size with int value.
Only retain objects with a width and height greater than this minimum size.
See also
- Parameters:
min_target_size – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInferParameters& the reference of this object.
-
int get_max_target_num() const#
Get Maximum Target Count.
Retain only the top N targets with the highest confidence score
See also
- Returns:
int Maximum Target Count
-
DetectionInferParameters &set_max_target_num(int max_target_num)#
Set Maximum Target Count with int value.
Retain only the top N targets with the highest confidence score
See also
- Parameters:
max_target_num – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInferParameters& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class DetectionTrainingStrategy : public visionflow::param::ISchemable#
DetectionTrainingStrategy Parameter class generated by jinja2 automatically.
Detection training tricks
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_auto_anchor() const#
Get Auto Anchor.
Auto anchor will automatically adjust the preset anchor size based on the image label
See also
- Returns:
bool Auto Anchor
-
DetectionTrainingStrategy &set_auto_anchor(bool auto_anchor)#
Set Auto Anchor with bool value.
Auto anchor will automatically adjust the preset anchor size based on the image label
See also
- Parameters:
auto_anchor – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionTrainingStrategy& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class DetectionInputShape : public visionflow::param::ISchemable#
DetectionInputShape Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable Custom Input Shape.
Enable to Customize Network Input Shape
See also
- Returns:
bool Enable Custom Input Shape
-
DetectionInputShape &set_enable(bool enable)#
Set Enable Custom Input Shape with bool value.
Enable to Customize Network Input Shape
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInputShape& the reference of this object.
-
int get_base_input_width() const#
Get Base Input Width.
Base Input Width
See also
- Returns:
int Base Input Width
-
DetectionInputShape &set_base_input_width(int base_input_width)#
Set Base Input Width with int value.
Base Input Width
See also
- Parameters:
base_input_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInputShape& the reference of this object.
-
int get_base_input_height() const#
Get Base Input Height.
Base Input Height
See also
- Returns:
int Base Input Height
-
DetectionInputShape &set_base_input_height(int base_input_height)#
Set Base Input Height with int value.
Base Input Height
See also
- Parameters:
base_input_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
DetectionInputShape& the reference of this object.
-
virtual const std::string &schema_str() const override#
View Transformer Parameters#
-
enum visionflow::param::ViewTransMode#
Values:
-
enumerator kByPixel = 0#
-
enumerator kByRatio = 1#
-
enumerator kByPixel = 0#
-
class ViewFilterParameters : public visionflow::param::SchemableParameter#
ViewFilterParameters Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_with_ok_view() const#
Get With OK View.
Treating views with no detection results as detection targets
See also
- Returns:
bool With OK View
-
ViewFilterParameters &set_with_ok_view(bool with_ok_view)#
Set With OK View with bool value.
Treating views with no detection results as detection targets
See also
- Parameters:
with_ok_view – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewFilterParameters& the reference of this object.
-
const std::map<std::string, SingleClassPolygonsFilterParameters> &get_keep_classes() const#
Get Keep Classes.
Polygon thresholds (area, side-length,etc.) named with the label classes according to which to filter the polygons.
See also
- Returns:
const std::map<std::string, SingleClassPolygonsFilterParameters> & Keep Classes
-
ViewFilterParameters &set_keep_classes(const std::map<std::string, SingleClassPolygonsFilterParameters> &keep_classes)#
Set Keep Classes with std::map<std::string, SingleClassPolygonsFilterParameters> value.
Polygon thresholds (area, side-length,etc.) named with the label classes according to which to filter the polygons.
See also
- Parameters:
keep_classes – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewFilterParameters& the reference of this object.
-
const SingleClassPolygonsFilterParameters &get_keep_classes(const std::string &key) const#
Get value in Keep Classes with key.
Warning
The key must be exist in Keep Classes. otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::map<std::string, SingleClassPolygonsFilterParameters> & value in Keep Classes at key.
-
ViewFilterParameters &set_keep_classes(const std::string &key, const SingleClassPolygonsFilterParameters &value)#
Set value in Keep Classes with key.
- Parameters:
key – the key to set.
value – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewFilterParameters& the reference of this object.
-
bool keep_classes_contains(const std::string &key) const#
Check if the key is exist in Keep Classes.
- Returns:
bool true if the key is exist in Keep Classes, otherwise false.
-
size_t get_keep_classes_size() const#
Get the size of Keep Classes.
- Returns:
size_t the size of Keep Classes
-
SingleClassPolygonsFilterParameters &get_keep_classes(const std::string &key)#
Get mutable reference of value in Keep Classes with key. A new key and default value will be created if the key does not exist.
- Returns:
SingleClassPolygonsFilterParameters& the mutable reference of value in Keep Classes at key.
-
virtual const std::string &schema_str() const override#
-
class ViewTransAutoMask#
ViewTransAutoMask Parameter class generated by jinja2 automatically.
Public Functions
-
bool get_enable() const#
Get Anable View Auto Mask.
Enable this option to use the detection result from the previous module as a mask.
See also
- Returns:
bool Anable View Auto Mask
-
ViewTransAutoMask &set_enable(bool enable)#
Set Anable View Auto Mask with bool value.
Enable this option to use the detection result from the previous module as a mask.
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewTransAutoMask& the reference of this object.
-
int get_dilate_pixel() const#
Get Dilate Pixel.
Dilate the detection result from the previous module before mask. A negative value indicate erosion operation.
See also
- Returns:
int Dilate Pixel
-
ViewTransAutoMask &set_dilate_pixel(int dilate_pixel)#
Set Dilate Pixel with int value.
Dilate the detection result from the previous module before mask. A negative value indicate erosion operation.
See also
- Parameters:
dilate_pixel – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewTransAutoMask& the reference of this object.
-
bool get_reverse_mask() const#
Get Reverse Mask.
Inverse masking of areas in the view that have no detection results from the previous module. Note that this option works after the dilate option if it’s not zero.
See also
- Returns:
bool Reverse Mask
-
ViewTransAutoMask &set_reverse_mask(bool reverse_mask)#
Set Reverse Mask with bool value.
Inverse masking of areas in the view that have no detection results from the previous module. Note that this option works after the dilate option if it’s not zero.
See also
- Parameters:
reverse_mask – the value to set.
- Returns:
ViewTransAutoMask& the reference of this object.
-
bool get_enable() const#
-
class ViewTransformParameter#
ViewTransformParameter Parameter class generated by jinja2 automatically.
Public Functions
-
ViewTransMode get_mode() const#
Get Offset Mode.
Offset by a fixed number of pixels or by a percentage depending on the size of the defect.
See also
- Returns:
ViewTransMode View Mode
-
ViewTransformParameter &set_mode(ViewTransMode mode)#
Set the view transform mode as ByPixel or ByRatio.
Generate view by a fixed number of pixels or by a percentage depending on the size of the defect.
See also
- Parameters:
mode – the The View mode.
- Returns:
ViewTransformParameter& the reference of this object.
-
const geometry::Vector2f &get_offset() const#
Get Offset Vector.
See also
- Returns:
The offset vector, Its practical use is determined by the VeiwTransOffsetMode in get_mode()
-
ViewTransformParameter &set_offset(const geometry::Vector2f &offset)#
Set View offset vector With the centre of the original test result as the reference coordinate system.
See also
- Parameters:
offset – the offset value to set.
- Returns:
ViewTransformParameter& the reference of this object.
-
const geometry::Size2f &get_window_size() const#
Get Window Size.
The view window size, The meaning of the options is determined by the Window Size Mode
The View window size mode. “DynamicPixel” mode means get the window size from the detection result from previous module and you can scale it with a fixed number of pixels; “DynamicRatio” mode means get the window size from the detection result from previous module and you can scale it by ratio; “FixedWindow” means set the view windows to a fixed size regardless of the size of the detection result from previous module.
See also
- Returns:
Window Size or Window expand size base on the detection result.
-
ViewTransformParameter &set_window_size(const geometry::Size2f &window_size)#
Set Window size.
The view window size, The meaning of the options is determined by the view mode.
See also
- Parameters:
window_size – the value to set.
- Returns:
ViewTransformParameter& the reference of this object.
-
bool get_fixed_window_size() const#
Get If the view windows size is fixed.
- Returns:
bool
-
ViewTransformParameter &set_fixed_window_size(bool fixed_window_size)#
Set this option as true to fix the view window size.
- Parameters:
fixed_window_size –
- Returns:
-
geometry::Radian get_rotate_angle() const#
Get the view rotate angle.
- Returns:
geometry::Radian the view rotate angle base on the reference coordinate system.
-
ViewTransformParameter &set_rotate_angle(const geometry::Radian &angle)#
Set the view rotate angle.
- Parameters:
angle – rotate angle.
- Returns:
ViewTransformParameter& this parameter object.
-
const ViewTransAutoMask &get_auto_mask() const#
Get Auto View Mask.
Auto view mask parameters
See also
- Returns:
const ViewTransAutoMask & Auto View Mask
-
ViewTransformParameter &set_auto_mask(const ViewTransAutoMask &auto_mask)#
Set Auto View Mask with ViewTransAutoMask value.
Auto view mask parameters
See also
- Parameters:
auto_mask – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ViewTransformParameter& the reference of this object.
-
ViewTransAutoMask &get_auto_mask()#
Get mutable reference of Auto View Mask.
Auto view mask parameters
- Returns:
ViewTransformParameter& the mutable reference of the group.
-
const geometry::MultiPolygon2f &get_manual_mask() const#
Get the manual mask object.
- Returns:
const geometry::MultiPolygon2f& Get the manual view mask.
-
ViewTransformParameter &set_manual_mask(const geometry::MultiPolygon2f &manual_mask)#
Set the manual mask object. The x-y coordinate value of the points in MultiPolygon2f should be established in the coordinate system with the upper-left corner point of the view after transforming based on the defact region and its angle.
-
ViewTransMode get_mode() const#
-
class ViewTransformParameterList : public visionflow::param::IParameter#
Public Functions
-
std::vector<std::string> keys() const#
All view transform parameters’ names.
- Returns:
std::vector<std::string> parameter names.
-
const ViewTransformParameter &at(const std::string &view_param_name) const#
Get view specified by the name.
- Parameters:
view_param_name –
- Returns:
ViewTransformParameter const&
-
bool contains(const std::string &view_param_name) const#
Check if the list contains parameter specified by the name.
- Parameters:
view_param_name –
- Returns:
bool
-
void erase(const std::string &view_param_name)#
remove parameter from the list.
-
std::string add(const ViewTransformParameter &view_param)#
Add a new ViewTransformParameter instance into this list. An new id will be generated for the parameter added.
- Parameters:
view_param – The parameter to be added into this list.
- Returns:
std::string The parameter id generated by the list.
-
void update(const std::string &view_param_name, const ViewTransformParameter &view_param)#
Update view parameter specified by view_param_name with the new parameter. If parameter specified by view_param_name does not exist, the new ViewTransformParameter instance will be added into this list with key view_param_name.
- Parameters:
view_param_name – The key of the parameter to be updated.
view_param – The new parameter to be updated.
-
std::vector<std::string> keys() const#
Sample Recommendation Parameters:#
-
class SampleRecommendationParameter : public visionflow::param::SchemableParameter#
SampleRecommendationParameter Parameter class generated by jinja2 automatically.
Parameter for the sample recommendation algorithm
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
double get_recommend_budget() const#
Get Recommend Budget.
The ratio of views to recommend
See also
- Returns:
double Recommend Budget
-
SampleRecommendationParameter &set_recommend_budget(double recommend_budget)#
Set Recommend Budget with double value.
The ratio of views to recommend
See also
- Parameters:
recommend_budget – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
SampleRecommendationParameter& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class PropertyObjectId : public visionflow::param::ISchemable#
PropertyObjectId Parameter class generated by jinja2 automatically.
Parameter group for a object IDs in a property.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_property_id() const#
Get Property ID.
ID of the property
See also
- Returns:
int Property ID
-
PropertyObjectId &set_property_id(int property_id)#
Set Property ID with int value.
ID of the property
See also
- Parameters:
property_id – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PropertyObjectId& the reference of this object.
-
const std::vector<std::string> &get_object_ids() const#
Get Object IDs.
IDs of the objects
See also
- Returns:
const std::vector<std::string> & Object IDs
-
PropertyObjectId &set_object_ids(const std::vector<std::string> &object_ids)#
Set Object IDs with std::vector<std::string> value.
IDs of the objects
See also
- Parameters:
object_ids – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PropertyObjectId& the reference of this object.
-
const std::string &get_object_ids(size_t index) const#
Get value in Object IDs with index.
Warning
The index must be less than get_object_ids_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const std::string & value in Object IDs at index.
-
size_t get_object_ids_size() const#
Get the size of Object IDs.
- Returns:
size_t the size of Object IDs
-
virtual const std::string &schema_str() const override#
-
class PropertyObjectIdSet : public visionflow::param::SchemableParameter#
PropertyObjectIdSet Parameter class generated by jinja2 automatically.
Parameter group for a set of property object IDs.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::vector<PropertyObjectId> &get_object_id_sets() const#
Get Property Object ID Sets.
Sets of object IDs in properties
See also
- Returns:
const std::vector<PropertyObjectId> & Property Object ID Sets
-
PropertyObjectIdSet &set_object_id_sets(const std::vector<PropertyObjectId> &object_id_sets)#
Set Property Object ID Sets with std::vector<PropertyObjectId> value.
Sets of object IDs in properties
See also
- Parameters:
object_id_sets – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
PropertyObjectIdSet& the reference of this object.
-
const PropertyObjectId &get_object_id_sets(size_t index) const#
Get value in Property Object ID Sets with index.
Warning
The index must be less than get_object_id_sets_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
const PropertyObjectId & value in Property Object ID Sets at index.
-
size_t get_object_id_sets_size() const#
Get the size of Property Object ID Sets.
- Returns:
size_t the size of Property Object ID Sets
-
PropertyObjectId &get_object_id_sets(size_t index)#
Get mutable reference of value in Property Object ID Sets with index.
Warning
The index must be less than get_object_id_sets_size(). otherwise, the behavior is undefined and will cause segmentation fault.
- Returns:
PropertyObjectId& the mutable reference of value in Property Object ID Sets at index.
-
virtual const std::string &schema_str() const override#
Training Set Recommend Parameters:#
-
enum visionflow::param::TrainingSetRecommendType#
Values:
-
enumerator kViewBase = 0#
-
enumerator kViewBase = 0#
-
class TrainingSetRecommendParameter : public visionflow::param::SchemableParameter#
TrainingSetRecommendParameter Parameter class generated by jinja2 automatically.
Parameter for the auto class balance
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
int get_num_to_select() const#
Get Select Number.
The number of views to select
See also
- Returns:
int Select Number
-
TrainingSetRecommendParameter &set_num_to_select(int num_to_select)#
Set Select Number with int value.
The number of views to select
See also
- Parameters:
num_to_select – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingSetRecommendParameter& the reference of this object.
-
const TrainingSetRecommendType &get_algorithm_type() const#
Get Algorithm type.
The Algorithm type string to be used training set recommend, currently supports three types: ViewBase, PixelBase, and RegionBase.
See also
- Returns:
const TrainingSetRecommendType & Algorithm type
-
TrainingSetRecommendParameter &set_algorithm_type(const TrainingSetRecommendType &algorithm_type)#
Set Algorithm type with TrainingSetRecommendType value.
The Algorithm type string to be used training set recommend, currently supports three types: ViewBase, PixelBase, and RegionBase.
See also
- Parameters:
algorithm_type – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
TrainingSetRecommendParameter& the reference of this object.
-
virtual const std::string &schema_str() const override#
Integration Tool Parameters:#
-
class IntegrationClassifyParameter : public visionflow::param::SchemableParameter#
IntegrationClassifyParameter Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
const std::string &get_script() const#
- And we provide a sample script to help you to implement your own script:
@brief Get Category Script. The list of classes and conditions to be evaluated. Note that the function `category_sample` must exist and return a string value.
import visionflow as vf from visionflow import geometry as geo def region_covered_by(region, ring): output = geo.MultiPolygon2f() geo.difference(ring, region.polygon(), output) return len(output) == 0 classifier_condition = { "Ok": lambda sample: any( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,100), geo.Point2f(100,100), geo.Point2f(100,0)])) for id, region in sample["Segmentation/pred"] ), "Car": lambda sample: any( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,200), geo.Point2f(200,200), geo.Point2f(200,0)])) for id, region in sample["Segmentation/pred"] ) or all( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,200), geo.Point2f(200,200), geo.Point2f(200,0)])) for id, region in sample["Classification/pred"] ), } # 综合判定节点的入口函数,不要修改这个函数的名称、参数和返回值类型 def integration_classifier(sample: vf.ISample) -> str: for category, condition in classifier_condition.items(): if condition(sample): return category return "Other"
See also
- Returns:
const std::string & Category Script
-
IntegrationClassifyParameter &set_script(const std::string &script)#
- And we provide a sample script to help you to implement your own script:
@brief Set Category Script with std::string value. The list of classes and conditions to be evaluated. Note that the function `category_sample` must exist and return a string value.
import visionflow as vf from visionflow import geometry as geo def region_covered_by(region, ring): output = geo.MultiPolygon2f() geo.difference(ring, region.polygon(), output) return len(output) == 0 classifier_condition = { "Ok": lambda sample: any( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,100), geo.Point2f(100,100), geo.Point2f(100,0)])) for id, region in sample["Segmentation/pred"] ), "Car": lambda sample: any( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,200), geo.Point2f(200,200), geo.Point2f(200,0)])) for id, region in sample["Segmentation/pred"] ) or all( 0 < region.area() < 10000 and 0 < region.polygon().bounding_box().long_side() < 30000 and 0 < region.polygon().bounding_box().short_side() < 30000 and -45 < region.angle().degree() < 45 and 0.1 < region.score() < 1.0 and region_covered_by(region, geo.Ring2f([geo.Point2f(0,0), geo.Point2f(0,200), geo.Point2f(200,200), geo.Point2f(200,0)])) for id, region in sample["Classification/pred"] ), } # 综合判定节点的入口函数,不要修改这个函数的名称、参数和返回值类型 def integration_classifier(sample: vf.ISample) -> str: for category, condition in classifier_condition.items(): if condition(sample): return category return "Other"
See also
- Parameters:
script – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
IntegrationClassifyParameter& the reference of this object.
-
const std::string &get_unmatched_name() const#
Get Unmatched Class Name.
The class name string to be used if none of the conditions are met.
See also
- Returns:
const std::string & Unmatched Class Name
-
IntegrationClassifyParameter &set_unmatched_name(const std::string &unmatched_name)#
Set Unmatched Class Name with std::string value.
The class name string to be used if none of the conditions are met.
See also
- Parameters:
unmatched_name – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
IntegrationClassifyParameter& the reference of this object.
-
virtual const std::string &schema_str() const override#
以下参数项仅为示例#
-
enum visionflow::param::ExampleAugmentType#
Values:
-
enumerator kExampleSelect = 0#
-
enumerator kExampleSecondSelect = 1#
-
enumerator kExampleOther = 2#
-
enumerator kExampleSelect = 0#
-
class ExampleAugRotate : public visionflow::param::ISchemable#
ExampleAugRotate Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable this augments
See also
- Returns:
bool Enable
-
ExampleAugRotate &set_enable(bool enable)#
Set Enable with bool value.
Enable this augments
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugRotate& the reference of this object.
-
double get_rotate_angle() const#
Get Rotate Angle.
Rotate angle
See also
- Returns:
double Rotate Angle
-
ExampleAugRotate &set_rotate_angle(double rotate_angle)#
Set Rotate Angle with double value.
Rotate angle
See also
- Parameters:
rotate_angle – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugRotate& the reference of this object.
-
bool get_flip_horizontal() const#
Get Flip Horizontal.
Flip horizontal
See also
- Returns:
bool Flip Horizontal
-
ExampleAugRotate &set_flip_horizontal(bool flip_horizontal)#
Set Flip Horizontal with bool value.
Flip horizontal
See also
- Parameters:
flip_horizontal – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugRotate& the reference of this object.
-
bool get_flip_vertical() const#
Get Flip Vertical.
Flip vertical
See also
- Returns:
bool Flip Vertical
-
ExampleAugRotate &set_flip_vertical(bool flip_vertical)#
Set Flip Vertical with bool value.
Flip vertical
See also
- Parameters:
flip_vertical – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugRotate& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ExampleAugShift : public visionflow::param::ISchemable#
ExampleAugShift Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable this augments
See also
- Returns:
bool Enable
-
ExampleAugShift &set_enable(bool enable)#
Set Enable with bool value.
Enable this augments
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugShift& the reference of this object.
-
double get_shift_width() const#
Get Shift Width.
Shift width
See also
- Returns:
double Shift Width
-
ExampleAugShift &set_shift_width(double shift_width)#
Set Shift Width with double value.
Shift width
See also
- Parameters:
shift_width – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugShift& the reference of this object.
-
double get_shift_height() const#
Get Shift Height.
Shift height
See also
- Returns:
double Shift Height
-
ExampleAugShift &set_shift_height(double shift_height)#
Set Shift Height with double value.
Shift height
See also
- Parameters:
shift_height – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugShift& the reference of this object.
-
virtual const std::string &schema_str() const override#
-
class ExampleAugments : public visionflow::param::SchemableParameter#
ExampleAugments Parameter class generated by jinja2 automatically.
Public Functions
-
virtual const std::string &schema_str() const override#
Get the json schema of the class.
- Returns:
std::string the json schema string.
-
virtual const void *schema() const override#
Get nlohmann::json object pointer.
As most user not config the nlohmann::json library, we convert it as void pointer to avoid exposing types from third-party libraries to users.
Note
As this interface is a virtual function, we can not hide it with macro.
Warning
Do not edit return value.
- Returns:
void* The nlohmann::json object pointer
-
bool get_enable() const#
Get Enable.
Enable this augments
See also
- Returns:
bool Enable
-
ExampleAugments &set_enable(bool enable)#
Set Enable with bool value.
Enable this augments
See also
- Parameters:
enable – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugments& the reference of this object.
-
const ExampleAugmentType &get_example_select() const#
Get Example Select Option.
Example select option
See also
- Returns:
const ExampleAugmentType & Example Select Option
-
ExampleAugments &set_example_select(const ExampleAugmentType &example_select)#
Set Example Select Option with ExampleAugmentType value.
Example select option
See also
- Parameters:
example_select – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugments& the reference of this object.
-
const ExampleAugShift &get_shift() const#
Get Shift.
Shift augments
See also
- Returns:
const ExampleAugShift & Shift
-
ExampleAugments &set_shift(const ExampleAugShift &shift)#
Set Shift with ExampleAugShift value.
Shift augments
See also
- Parameters:
shift – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugments& the reference of this object.
-
ExampleAugShift &get_shift()#
Get mutable reference of Shift.
Shift augments
- Returns:
ExampleAugments& the mutable reference of the group.
-
const ExampleAugRotate &get_ctm_rotate() const#
Get CustomizeRotate.
Rotate augments
See also
- Returns:
const ExampleAugRotate & CustomizeRotate
-
ExampleAugments &set_ctm_rotate(const ExampleAugRotate &ctm_rotate)#
Set CustomizeRotate with ExampleAugRotate value.
Rotate augments
See also
- Parameters:
ctm_rotate – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugments& the reference of this object.
-
ExampleAugRotate &get_ctm_rotate()#
Get mutable reference of CustomizeRotate.
Rotate augments
- Returns:
ExampleAugments& the mutable reference of the group.
-
const ExampleAugRotate &get_rotate() const#
Get Rotate.
Rotate augments
See also
- Returns:
const ExampleAugRotate & Rotate
-
ExampleAugments &set_rotate(const ExampleAugRotate &rotate)#
Set Rotate with ExampleAugRotate value.
Rotate augments
See also
- Parameters:
rotate – the value to set.
- Throws:
visionflow::excepts::JsonSchemaValidationError – if validate the value with json schema failed.
- Returns:
ExampleAugments& the reference of this object.
-
ExampleAugRotate &get_rotate()#
Get mutable reference of Rotate.
Rotate augments
- Returns:
ExampleAugments& the mutable reference of the group.
-
virtual const std::string &schema_str() const override#